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Abstract Extremes of quadratic forms have been discussed in [1] and [3]. Some related
topics can be found in [2]. Some extremes of determinants and optimal properties of
canonical variables were obtained in [1]. Here discussed are some extensions to [1}.

1. Determinants and Traces

Theorem 1 For compatible matrices T and W, non-negative definite (n.n.d.) matriz A
and positive definite (p.d.) matriz D,

(1) |T'AW |2 < |T'AT||W' AW |, with equality iff T'AT or W' AW are singular, or AT =
AW Q for some nonsingular matriz Q.

(2) |T'W|* < |T'DT||W'D~W|, with equality iff T'DT or W'D™'W are singular, or
DT =WQ for some nonsingular matriz Q.

Theorem 2 For compatible n.n.d. matriz A, p.d. matriz D, n X k full column rank
matriz T,k X k identity matriz Ix,A\1(-) > -+ > As()-

() I MD'4)<|r'aTi/|T'DT],
i=n-k+1 .

n
(2) infripr-n|T'AT| =[] X(D7'A).
i=n—k+1
Theorem 3 For compatible matrices T and W, n.n.d. matriz A and p.d. matriz D,

(1) (t¢T'AW)? < (8rT' AT)(tW' AW), with equality iff the matrices AT and AW are
proportional,

(2) (T'W)? < (&T'DT)(t W'D~ W), with equality iff the matrices DT and W are
proportional, ‘ ‘
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(3) (tT'AW)E < (rT'ATW'AW), with equality ff ATW'A = AWT'A,
(4) (&#T'W)? < (tT'DTW'D-W), with equality iff DTW' = WT'D.

Theorem 4 For n x n symmetric A, p.d. matriz D and n X k matriz T # 0,

A (D7A) < (¢T'AT)/(¢T' DT) < M (D7 A).

. Theorem 5 For n x m matriz A,n X k matriz T # 0,m X k matriz W # 0,n X n p.d.
matriz Dy end m x m p.d. matriz Dy,

A(D{YADFIAYY < (trT'AW)?/[(trT' DI T)(trW' DoW)] < Ay(D7'AD; ' 4'),

where the first relationship also needs that the matrices DiT and AW (or A'T and D,W )
are proportional.

Theorem 6 For n x n symmetric matriz A, p.d. matriz D,n x k full column rank matriz
T, -

k
(1) sup trT'AT =) M(D7'A),
T'DT=1k -1

n
: 1 _ . -1
(2) . jnf  rT'AT = Z Xi(D7TA).
t=n—k+1
n

(3) sup tr(T'AT) ! = Z A Y (D7A), for p.d. matriz A,

T'DT=1Ik imn— k41
k
(4) T'glzl‘lektr(T’AT)_l = ’Z::l )‘ZI(D—IA), for p.d. matriz A.

Theorem 7 For n x m matriz A, full column rank n X k matriz T,m x k matriz W,n x n
p.d. matriz Dy and m x m p.d. matriz D,,

k
(1) sup (trT'AW)? = kY A(Dy'AD;A"),

T'D\T=IkW'D,W=1k =1

(2) (trT'AW)* <k > XN(Di'AD;'A'), with equality if the ma-

inf
T'D,T=Ik,W'D,W=1Ik .
. i=n—k+1 .
trices DT and AW (or A'T and DWW ) are proportional.

Theorem 8 For any n X n matriz A, full column rank n x k matrices T and W,n x n
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p.d. matrices Dy and D,,

IA

k
sup tr(T' AW)? > Xi(Di'ADFA),
T'D\T<IkW'D,W=Ik i=1

tr(T'AW)? < > N(D7'AD; A,

DT 1
WT=1kWID W =1k i=n—k+1

both with equality if AWT'Dy = D\TW'A', or D;WT'A = A'TW'D,.

Note Specifically we can take D, D; and D, as compatible identity matrices respectively
in the above theorems.

2. Statistical Applications

Let 2/ = (z',y'),z = (21,--+,2zn) and y = (y1, ++,ym)' be two random vector with
the expectation E(z) = 0 and the variance matrix D(z) = X with st'* position X,,s,t =
1,2.331 and ¥3; be non-singular and rank(X13) =r > k.

Theorem 9 Let T and W be n X k and m X k matrices with T'T = W'W = I.. Then

(1) tr D(T'E7 81,55, % y) < tr D(PLE T 51055  y),

tr DW'S5, £ 57 *2) < trD(Q4 55, B0 511 a),
where Py and @} satisfy the following equations
P'Ei‘ll/zﬁmﬁzz 22124/21’;; = diag(A1,- -+, Ak),
Q0 ST 8T, P Q) = diag(hr, -, M),
PP = QiQi = L,

where Ay > -+ > X > 0 are the eigenvalues of 21_1/ 21285 221211/ and therefore of
2_2—21/22212;112122;21/27Pk = (plf vt :pk)’Qk = (ql) a‘IIc):Px and qi are the eigenvectors
of 2;11/22122;212212;11/2 and 2;21/22212{112122;21/2 respectively, associated with A\;(i =

1,...,k).

(2) [k tr Con(T'E 22, WS )2 < k718% A(E1 81550 5n).
Theorem 10 Let T and W be n x k and m x k matrices with T'E T = W'E,W = I,
Then

(1) trD(T'S1,%5'y) < trD(A'S12557y),

trD(W'E1 27} 2) < tr D(B'E E12),
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here A and B satisfy the following equations

AT EnA = diag(Ay, -+, M),
B'SuSlSnuB = diag(h, -, ),
AT A = B'SpB=I.

(2) (k™ ltr Coo(T'z, W'y)]? < k2L N(ZT 12554 E0).

Theorem 9 and 10 are related to the canonical variables and generalized correlation
coeficients, see [1]. For other applications, see e.g. {2] and {3].
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