If $xR \neq \{0\}$, then R has a non-zero nilpotent ideal I. That is $I^n = \{0\}$, where n > 1 is a fixed integer. Since $L \subseteq I$, $L^n = \{0\}$. This is a contradiction. Thus $xR = \{0\}$, so xe = 0 and $x \in K$. This proves the right annihilator of e in R is $\{0\}$ which is an ideal of R. By Theorem 4, R is a division ring. \square

Theorem 5 Let N be a zero-symmetric near-ring and $E = \{e \in N | en = n \text{ for all } n \in N\}$. If E is nonempty and for each $n \in N, n \neq 0$, and there is at least one element n' in N such that $nn' \in E$, then N is a near-field.

Proof It is easily seen that $0 \notin E$ except $N = \{0\}$. If there are two different elements e, e' in E, there is at least one element n in N such that $(e - e')n \in E$, and er = r, e'r = r for all $r \in N$. Hence (e - e')r = 0 for all $r \in N$, a contradiction. Thus e = e'. Let $n \in N$ and $n \neq 0$. There is at least one element m in N such that $nm = e \in E$. Hence n(mn) = (nm)n = en = n. There is at least one element k in N such that (mn)k = e. From n(mn) = n, we have m[n(mn)] = (mn)(mn) = mn. Multiplying the last equality from the right by k, we have (mn - e)e = 0. If $mn - e \neq 0$, there is at least one element k in k such that k such that

Corollary $4^{[3]}$ Let R be a ring, and $E = \{e \in R | er = r \text{ for all } r \in R\}$. If E is nonempty and for each $r \in R, r \neq 0$, there is at least one element r' in R such that $rr' \in E$, then R is a division ring.

References

- [1] G. Pilz, Near-Rings, North-Holland Publishing Company, 1983.
- [2] Fu Changlin, J. Math. Res. and Exp., 2(1983), 17-22.
- [3] Tong Jingcheng, J. Math. Res. and Exp., 1(1989), 156.

拟环为拟除环的几个条件

魏 宗 宣 (湖南教育学院数学系,长沙410012)

摘 要

我们定义了左、右不变拟子环和完全亚直既约拟环,给出了拟环为拟除环的几个条件,这些结果可以直接推广到结合环.

Some Conditions for Near-ring to Be Near-field*

Wei Zongxuan (Hunan Educational Institute, Changsha)

All near-rings here are right near-rings. Let N be a near-ring. A subgroup M of (N, +) is called a right(left) invariant subnear-ring of N if $MN \subseteq M$ ($NM \subseteq M$). If M is both a left and a right invariant subnear-ring, then M is an invariant subnear-ring [4].

Proposition 1 Let e be a distributive idempotent element of a zero-symmetric near-ring N. If Ne is a minimal left invariant subnear-ring of N, then eNe is a near-field.

Proof If $n \in eNe$ and $n \neq 0$, then $n \in Ne$ and Nn = Ne. From eNn = eNe we have (eNe)n = eNe. There is at least one element n' in eNe such that n'n = e. Thus eNe is a near-field. \square

Proposition 2 Let e be a distributive idempotent element of a zero-symmetric near-ring N. If N has no non-zero nilpotent left invariant subnear-rings and eNe is a near-field, then Ne is a minimal left invariant subnear-ring.

Proof Let A = Ne. Assume L is a non-zero left invariant subnear-ring of N such that $L \subseteq A$. If $eL = \{0\}$, then $L^2 \subseteq AL = \{0\}$, a contradiction. Thus L has a non-zero element ene. There is $eme \in eNe$ such that $(eme) \cdot (ene) = e \in L$. Thus Ne is a minimal left invariant subnear-ring. \square

Proposition 3 If L is a minimal left invariant subnear-ring of a zero-symmetric near-ring N, then $L^2 = \{0\}$ or L has an idempotent element.

Proof Suppose $L^2 \neq \{0\}$. Then L has an element n such that $Ln \neq \{0\}$ and Ln = L. Thus L has e such that en = n, so $e^2n = en$ and $(e^2 - e)n = 0$. Let $A = \{x \in L | xn = 0\}$. Then A is a left invariant subnear-ring of N and $A \neq L$. Hence $A = \{0\}, e^2 - e = 0$, i.e., L has an idempotent element e. \square

Definition Let N be a zero-symmetric near-ring. H is the intersection of all non-zero invariant subnear-rings of N. If $H \neq \{0\}$, N is called completely subdirect irreducible.

Theorem 1 Let e be a distributive idempotent element of a completely subdirect irreducible near-ring N and Ne be a minimal left invariant subnear-ring of N. If H has no non-zero nilpotent elements, then N is a near-field.

Proof Let D be the left annihilator of H in N. If $eH = \{0\}$, then $e \in D$. Thus D is a

^{*}Received Feb. 7, 1992.

non-zero invariant subnear-ring of N, so $H \subseteq D$ and $H^2 \subseteq DH = \{0\}$, a contradiction. Thus $eH \neq \{0\}$. If $He = \{0\}$, then $(eH)^2 = \{0\}$ and $eH = \{0\}$, a contradiction. Thus $He \neq \{0\}$, so $Ne = He \subseteq H$, and $e \in H$. Let $x \in N$ and xe = 0. Then $(eNx)^2 = \{0\}$ and $eNx = \{0\}$. Hence ex = 0. Similarly ex = 0 implies xe = 0. The left and the right annihilator of e in N are coincident, which we denote by K. If $K \neq \{0\}$, then $H \subseteq K$ and $eH \subseteq eK = \{0\}$, a contradiction. Thus $K = \{0\}$. Let $n \in N$. Then (ne - n)e = 0 = e(en - n). Hence ne - n = 0 = en - n. By Proposition 1, N = eNe is a near-field. \square

Let R be an associative ring, H be the intersection of all non-zero ideals of R. If $H \neq \{0\}$, R is said to be subdirectly irreducible.

Corollary 1 Let e be an idempotent element of a subdirectly irreducible ring R and Re be a minimal left ideal of R. If H has no non-zero nilpotent elements, then R is a division ring.

Theorem 2 Let N be a completely subdirect irreducible near-ring. If N is commutative and H has no non-zero nilpotent elements, then N is a near-field.

Proof By assumption, H is a minimal left invariant subnear-ring of N. Since $H^2 \neq \{0\}$, H has an idempotent element e by Proposition 3. From $Ne \neq \{0\}$ and $Ne \subseteq H$ we have Ne = H. By Theorem 1, N is a field. \square

Corollary 2 Let R be a commutative subdirectly irreducible ring. If H has no non-zero nilpotent elements, then R is a field.

Theorem 3 Let L be the intersection of all non-zero left invariant subnear-rings of a zero-symmetric near-ring N. If L has a distributive idempotent element and has no non-zero nilpotent elements, then N is a near-field.

Proof By assumption, L has a distributive idempotent element e and L = Ne is a minimal left invariant subnear-ring of N. eNe is a near-field by Proposition 1. Let K be the left annihilator of e in N. If $K \neq \{0\}$, then $Le \subseteq Ke = \{0\}$, a contradiction. Thus $K = \{0\}$. Let $n \in N$. Then (ne - n)e = 0, ne = n, i.e., e is the right identity of N. If $x \in N$ and ex = 0, then $(xNe)^2 = \{0\}$, $xNe = \{0\}$, so xe = 0. Thus x = 0. Since e(en - n) = 0 for all $n \in N$, en - n = 0, i.e., e is the left identity of N. Thus N = eNe is a near-field. \square

Theorem 4 Let L be the intersection of all non-zero left invariant subnear-rings of a zero-symmetric near-ring N. If L has a distributive idempotent element e such that the right annihilator of e in N is a left invariant subnear-ring of N, then N is a near-field.

The proof is similar to that of Theorem 3, and is omitted.

Corollary $3^{[2]}$ Let L be the intersection of all non-zero left ideals of a ring R. If $L^2 \neq \{0\}$, then R is a division ring.

Proof From $L^2 \neq \{0\}$, we get by Proposition 3 that L has an idempotent element e. By imitating the proof of Theorem 3, it can be deduced that the left annihilator K of e in R is $\{0\}$ and e is the right identity of R. Let $x \in R$ and ex = 0. Then $(xR)^2 = (xRe)^2 = \{0\}$.

If $xR \neq \{0\}$, then R has a non-zero nilpotent ideal I. That is $I^n = \{0\}$, where n > 1 is a fixed integer. Since $L \subseteq I$, $L^n = \{0\}$. This is a contradiction. Thus $xR = \{0\}$, so xe = 0 and $x \in K$. This proves the right annihilator of e in R is $\{0\}$ which is an ideal of R. By Theorem 4, R is a division ring. \square

Theorem 5 Let N be a zero-symmetric near-ring and $E = \{e \in N | en = n \text{ for all } n \in N\}$. If E is nonempty and for each $n \in N, n \neq 0$, and there is at least one element n' in N such that $nn' \in E$, then N is a near-field.

Proof It is easily seen that $0 \notin E$ except $N = \{0\}$. If there are two different elements e, e' in E, there is at least one element n in N such that $(e - e')n \in E$, and er = r, e'r = r for all $r \in N$. Hence (e - e')r = 0 for all $r \in N$, a contradiction. Thus e = e'. Let $n \in N$ and $n \neq 0$. There is at least one element m in N such that $nm = e \in E$. Hence n(mn) = (nm)n = en = n. There is at least one element k in N such that (mn)k = e. From n(mn) = n, we have m[n(mn)] = (mn)(mn) = mn. Multiplying the last equality from the right by k, we have (mn - e)e = 0. If $mn - e \neq 0$, there is at least one element k in k such that k such that

Corollary $4^{[3]}$ Let R be a ring, and $E = \{e \in R | er = r \text{ for all } r \in R\}$. If E is nonempty and for each $r \in R, r \neq 0$, there is at least one element r' in R such that $rr' \in E$, then R is a division ring.

References

- [1] G. Pilz, Near-Rings, North-Holland Publishing Company, 1983.
- [2] Fu Changlin, J. Math. Res. and Exp., 2(1983), 17-22.
- [3] Tong Jingcheng, J. Math. Res. and Exp., 1(1989), 156.

拟环为拟除环的几个条件

魏 宗 宣 (湖南教育学院数学系,长沙410012)

摘 要

我们定义了左、右不变拟子环和完全亚直既约拟环,给出了拟环为拟除环的几个条件,这些结果可以直接推广到结合环.