m(n+ 2t — 1) + 1. Set Py = vo,v1, *+,¥m—1. Then H = Kp(ni-141 — V(Pm) is a

complete graph with order m|[(n — 1) + 2t — 1]+ 1. By induction hypothesis, it follows that

K(n—l)+4t —tKs C HN B,. So we obtain K, 4t —tKs C (V(K(n—l)+4t - tK3) U {‘Uo}) N Bs.
The proof of Theorem 2.1 is completed. O
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1. Introduction

For simple graphs G; and G, the generalized Ramsey number associated with G,
and Gj is defined to be the smallest positive integer p such that if K, = B; X By is an
arbitrary factorization of Kp(i.e., By and By have orders p and E(B;) U E(B;) partitions
E(K,), then Gy C Bj, or G3 C Bz. A (G1,G3)-blocking pattern of K, is a factorization
K, = By x By such that G; € By and G3; € B;. For a vertex v in K, define

Ni(v) = {ueV(K,)/vue E(Bi)},i=1,2.
N (v) = N(v)| Jv}.i=12
|N,(U)| = d,-(v),i = 1,2

Let G be a subgraph of Kp, and B;(G) denote the set of vertices such that v € B;(G),
implies
Ni(v)(V(G) =9, (1)
if ve V(G) — B;(G), then
Ni(0) V(@) #0. 2)
If S C V(G), the subgraph induced by S, which we denote by (S), is the subgraph

with veries set S and edge set consisting of those edges of G incident to two elements of

S. We denote by G; — G2 the graph obtained by deleting the edges of G2 from the graph
G;.

We shall need the following results.

Theorem A2l Let T, be a tree of order m, and n be a positive integer. Then

R(Tm,Kp)=(m-1)(n—-1)+1.

*Received Apr. 28, 1992.
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Theorem B!l Let m > 3,n > 6, and Ty, be a tree of order m with Ty, # Ky m—1 for
m > 4. Then

-2
R(Tm,Kn—tKy)=(m—-1)(n—t-1)+1, for0<t < ["T],

Theorem Cl2 Let T,, be a tree of order m(> 3), ana n > 4. Then
R(Tm,Kn— K2)=(m-1)(n—-2)+ 1.

Furthermore, we have R(Tp,G) = (m — 1)(n — 2) + 1, for each graph G of order n with
cligue number n — 1.

Theorem D@2l If G and H are simple graphs, then
R(G,H) > (x(G) — 1)(c(H) - 1) +1,

where x(G) and ¢(H) denotes the chromatic number of G and the order of the largest
component of H, respectively.

Theorem E If P, is a graph of order m(> 4) and G, 1s a graph of order n + 2 with
clique number n(> 3), then

R(Pm,Gn)=(m—1)(n—-1)+ 1.

The purpose of this paper is to investigate the generalized Ramsey number of tree
versus complete graph minus multiple copies of path and complete graph of order 3.
These results will give an partial answer to the problems raised by Gould and Jacobson
in {1].

2. On the generalized Ramsey numbers R(T,., K, — tP;)

Lemma 1.1 Ifm >3, and 0<t <1, then

R(Tm, K3 —tP3s) < (m-1)(3-t-1)+1, (3)
R(Tm,Ks—tP3) < (m—-1)4—t—-1)+1, (4)
R(Tm,Ks—tPs) < (m-1)(5-t—-1)+1. (5)

Proof If t = 0, the results follow directly from Theorem B. If t = 1, it follows from
Ki— Ps C Ky — K and Ks — P3 C K5 — K that R(Tpn, Kg — K3) < R(Tm, K4 -
K32), R(Tm, K5 — P3) < R(Tm, Ks — K3). This finishes the proof. m

Theorem 1.2 Let m > 3,n > 3, T, be a tree of order m with Ty, # K1 m—1 for m > 4.
Then n
R(Tpm,Kn —tPs)=(m—-1)(n—-t—-1)+1, for0<t < [-5]
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Proof By Theorem D, R(Tp, Kn —tP3) > (m—1)(n —t — 1) 4+ 1. It suffices to show that
R(Tp,Kn—tPs) < (m—-1)(n—-t—-1)+ 1 (6)

This follows immediately from Lemma 1 for n < 5. Since K, — tP3 C K,, — tK2, we have
R(Tp,Kn — tP3) < R(Tp, K, — tK3). By Theorem B the inequality (6) holds for n > 6.
The proof is complete. O

In order to give the generalized Ramsey number R(Kjm, K, — tPs), we need the
following lemma.

Lemma 1.3 Ifn>1,0<t<n, then

R(K1|3,K3n —tP3) S 3(3n—t— 1)+1, (7)
R(K1,3, K3n+1 - tP3) < 3(371 - t) + 1, (8)
R(K1,3’ K3,,+2 — tP3) S 3(371 —t4 1) + 1. (9)

Proof We proceed by induction on n. By Lemma 1, the results are obvious for n = 1.
To complete the argument, we need only to show that for each t,0 <t < n+ 1, there hold

R(K1,3, Kspys — tP3) < 3(3n -1+ 2) +1, (10)
R(K1,3, Ksniq — tP3) < 3(3n —t+ 3) +1, (11)
R(Kl,s, K3nis — tP3) < 3(3n —-t+ 4) + 1. (12)

Assume that there is a (K1,3 K3n+3—tPs)-blocking pattern of K3(3n—¢+2)+1. Let K3(3n—t+2)+1

= B1 X B3 such that K, 3 Z B; and K3nt13—tP3 € Bz. For 0 <t < n, since by the hypoth-
esls R(K1’3K3n+2 —tP3) < 3(3n—t+1)+1, then K3, ;92— tP3 C By. Set G = K3n+2—tP3),
and H = K3(3n—t+3)+1 — V(G). Then H is a complete graph of order 6n — 3t + 5. If there
exists vg € V (H) such that Ny(vo)nV(G) = 0, then K3,43—tP3 C (V(G)U{vo})NB;. This
proves (10). If there exists vp € V(H) such that Ny(vo) NV (G) = {v'}, and v' € B1(G),
then K3,42 —tPs C (V(G)U {vo}) N B,. This also finishes the proof of (10). Now suppose
that there exists vo € V(H) such that Ny(vo)NV (G) = {v'}, but v' & By(G). Let v; be the
central vertex of P3(P3 g Bl) and ‘U, € V(Pa) Then K3n+2 - tP3 g (V(G) - {vl}) N Bz.
Hence, we may assume that for any v € V(H), there holds |[N;(v) NV (G)| > 2. It fol-
lows that H C B;. Take vy € V(G), then K3ny3 — tPs C (V(H) U {vo}) N By, since
6n — 3t +5 > 3n + 2. This contradicts the fact that K33n_t12)+1 is a (K1,3K3n3 — tP3)-
blocking pattern. Fort =n+1, since 3(3n —t+2)+1>3(3n—1t)+1,K3n43 — tP3 C Bj.
This contradiction gives the proof of the inequality (10).

Suppose K3(3n-t4+3)+1 = B1 X B; is a (K13, K3ny4 — tP3)-blocking pattern. We take
vo € V(K3(3n-t+3)+1), and set H = K3(3n-t+3)+1 — Ni(vo). Then H is a complete graph
of order 3(3n — t + 3) + 1. By inequality (9) we see that Ks,43 — tPs C By N H, hence
K3n+4 —tP3 C Ba N (H + vg). This contradiction gives the proof of (11).

By a similar argument, one can prove (12). m]

Theorem 1.4 Ifm > 3,n > 3, then R(Km, Kn—tP3) =m(n—t—1)+1, for 0 <t < [3].

— 171 —



Proof From Theorem A and Theorem D, we need only to prove that for each t,1 <t < s,
there holds

R(Kim,Kss —tP;) < m(3s—t—-1)+1, (13)
R(Kl,m, K3,+1 - tP3) < m(3s — t) + 1, (14)
R(Kym,K3s42 —tP3) < m(38s—t+1)+1. (15)

We prove these inequalities by a double induction on m and s.

For m = 3,s > 1, and m > 3,s = 1, it is trivial from Lemma 1.1 and Lemma 1.3.
Suppose the inequalities hold for m > 3 and s > 1. We prove the results for m + 1 and
s+ 1.

Let K(m1)(3s—t+2)+1 = B1 X Bz, and Kq,m+1 € Bi. By induction hypothesis, we have
K3spz — (t —1)P3 C B;. Set G = K3epz — (t — 1)P3 and H = K(my1)(3s-t+2) — V(G).
Then H is a complete graph of order m(3s — t + 2) — t + 1. We proceed similarly to the
proof of Lemma 1.2. Assume that there exists v € H, such that |Ny(v)NV(G)| > 2. Since
s+1>t,m@Bs—-t+2)—t+1>(m-1)(3s—t+2)+ 1. By induction hypothesis again,
we have Ks3,13 — tP3 C B,. This gives the proof of the inequality (13).

Assume that K(my1)(3:—1+3)+1 = B1 X Bz, and K1 m+1 € Bi. Choose a vertex vg
from K(my1)(3s—t+2)+1- Then K(mi1)3s—t+2)+1 — Ni(vo) is a complete graph of order
at least (m + 1)(3s — t + 2) + 1. It follows from (13) that Ks,43 — tPs C B, hence
K3s+4 = tP3 C (K(m+1)(3s-t+3)+1 — N1(v0)) N Bz, and the inequality (14) follows. Finally,
the inequality (15) can be proved in an analoguous way. g

In summary, we have

Corollary 1.5 Ifm >3,n > 3, then R(Tp,, K, —tPs) = (m—1)(n—t — 1) + 1, for each
t,0 <t <[3].

3. On the generalized Ramsey number E(P,, K, — tK3)

Theorem 2.1 Ifm >4 andn,t > 1, then R(Pp,Knygt —tK3) =(m—1)(n+2t—1)+1.

Proof It follows from Theorem D that R(Pp, Kpniat — tKs) > (m—1)(n+ 2t - 1) + 1.
By Theorem E, we see that for m > 4 and n > 1, there holds

R(Pm,Kn+4 — K3) < (m - 1)(n -+ 1) + 1. (16)
Now we show that
R(P4,K1+4¢) - tK3) <6t+1, fort > 1. (17)

We prove the inequality (17) by induction on ¢.
The case of t = 1 is obvious from (16). Assume that for t + 1 > 1, the inequality (17)
is true. Let Kg;41 = By X By. If Py € By, we are led to consider two cases:

Case 1. There exists vp € Kgt+1 such that dyj{vo) > 4. Set N1(vo) = {v1,v2, v3, vq,

---}, and H = K41 — {vo,v1,--,vs}. Then H is a complete graph of order 6(t — 1) + 2.
By induction hypothesis we have K;,4-1) — {t — 1)K3 C By N H, and Ny(v;) "V (H) =
0,1' = 1,2,3,4,‘!1,‘11]' (S E(Bz),l <i1#37<4. Thus Ky,4t —tK3 C (V(Kl + 4(t - 1) - (t -
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1)K3) U {01,02,1)3,1)4}> N B,.

Case 2. If for any v € Kg;41, there holds dy(vp) < 3, then we consider the following three
subcases:

Subcase 1. There exists vg € Kg;41, such that dy(vs) < 3. Then we take v € Kgiy1 —
N; (vo) such that dj(v) is the largest, and set Ny(vo) = {v1, vz, va}, N1(v) = {v},---}, and
H = Kgi41— Nj(vo)U{v}}. Thus H is a complete graph of order 6(t —1)+1. By induction
hypothesis it follows that Kii4(t-1) — (t — 1)K3 C By, so that

Kitar — tKs € (V(Kiya—1) — (t — 1)K3) [ J{v1, v2,vs,v1}) () Be-

Subcase 2. There exists vy € Kgt41, such that dj(vg) = 2. Take v € Kgrp1 — Ni(vo),
and set N;(vp) = {v1,v2}, N1(v) = {v},---}, and H = Ket4+1 — Ni(vo) U Ni(v). Then H
is a complete graph of order at least 6(t — 1) + 1. It follows from the induction hypothesis
that Kj44¢-1) — (t — 1)K3 C B;. So we have

Kiyae — tK3 C (V(Kipap-1) — (t = 1) K3) | Ny (vo) (v} ) Be-

Subcase 3. For any v € Kgi41, there holds di(v) < 1. Then Kz 41 C Bz. Take
vy, ++,v € Ketp1 — V(Kae41). It follows that

Kiva — tK3 C (V(Kaep1) U {v1, -+, u})[) Bz

The proof of the inequality (17) is completed.
Now, we show that forn > 1and t > 1,

R(Py, Kniat —tK3) <3(n+2t—1)+1. (18)

This is easy for n = 1 from the inequality (17). By the induction hypothesis, we assume
that the inequality (18) is valid for n > 1 and fixed t > 1. We shall show that the inequality
(18) is valid for n+ 1 and ¢ > 1.

Let K3(n+2t+1) = B1 X Bz. Assume that Py  Bj. If there exists vo € Ka(nt2t+1) such
that di(vo) > 2, set H = K3(nt2e41) — Ni(vo). Since H is of order at least 3[(n — 1) +
2t — 1] + 1, it follows from the induction hypothesis that Kn_1)+at —tK3 C HN By. So
that Kp44 — tK3 C (V(K(n—1)+4t — iK3) U {vo}) N Bz. If there exists v € K3(n+t—1)+1
such that d;(v) > 3, then take vo € K3(nt2:-1)+1, and set Ni(vo) = {v1,vz,v3,---}. Thus
H = K3(ny2t-1)+1 — {vo,v1,v2} is a complete graph of order 3[(n-1)+2t-1+1. By
induction hypothesis, we see that K(,_1)14 — tK3 C H N By, and Ni(v;) NV (H) = 0, for
1+ = 1,2. Therefore we have K4 — tK3 C Bs.

Finally we show that

R(Pm,Kniat —tK3) <(m—1)(n+2t — 1)+ 1, form > 4,n,t > 1. (19)
By the inequality (18), (19) is trivial for m = 4. Now assume that (19) holds for
m > 4,n,t > 1. Let Kp(nyae-1)+41 = B1 X Bz, then Py # By, since R(Pm, Kn+4t —tK3) <
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m(n+ 2t — 1) + 1. Set Py = vo,v1, *+,¥m—1. Then H = Kp(ni-141 — V(Pm) is a

complete graph with order m|[(n — 1) + 2t — 1]+ 1. By induction hypothesis, it follows that

K(n—l)+4t —tKs C HN B,. So we obtain K, 4t —tKs C (V(K(n—l)+4t - tK3) U {‘Uo}) N Bs.
The proof of Theorem 2.1 is completed. O
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