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Global Existence and Asymptotic Behaviour of Solution
for a Strongly Coupled Parabolic System *

Chen Caisheng
(Dept. of Math. & Phys., Hehai University, Nanjing)

1. Introduction

In this paper, we are interested in global existence and asymptotics for nonncgative
solution of the following problem:

u=alu+bAv+ f(u,v) in 2 x (0, +o0)
vw=cAu+dAv+g(u,v)
u(z,t) = v(z,t) =0 on 98 x (0, +o0)

u(z,0) = up(z),v(z,0) = vp(z) in Q.

Here Q is a bounded domain in R with the smooth boundary 9, ug and vg are the given
nonnegative functions.

Problem (1.1) arises in ecology as a model of two competing species with cross-diffusion
effects (see [1,2]). In [2], M. Kirane considered the global bounds and asymptotics for
problem (1.1) for b = 0,a > d > 0 and f = —g. In [3], we proved that there was
no global solution for (1.1) if f(u,v) + g(u,v) > ko(|ulP + |v|P),(ko > O,p > 1), and
HUOHC(ﬁ) > 51,””0”4(‘4) > §;, for some §; > 0.

The object of this paper is to prove the global existence and asymptotics if ug and vg
are small in the L” norm. The proof is given by combining the energy method and the
linear semigroup theory.

The following assumption will be made throughout:

[b] + |e|

(1). the constants a,b,c,d are such that a,d > and bc > 0.

{2). f,g9 € C! and there exist some positive constants ky, ks, o;(1 = 1,2,3,4)
(H) such that

£ (w0l < By(Jul™® + Jo]'*22)  for (u,v) € R?,

l9(u,v)| < ka(luf'*oe + []1+).

"Received Apr. 7, 1992.
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Now let us state the main results. Define ap = 1r21§1<x4{oz'~}.
—.‘——.

Theorem 1. Assume (H) and 0 < ap < 4,00 € C™ and % < 1. Then there ez-
ist a constant dy > 0, such that if nonnegative ug,vo € L%(Q) and ||uoll} + |lvoll} <
do, the problem (1.1) admits a unique nonnegative solution (u,v) which satisfies u,v €

C((0,+oo)lwoly2nwz‘2) N C(I(O,Jroo)'m) and for any T > O,
lu(t)llwzz2 + [[v(®)llwzz < Co(T)(luollz + llvoll2)e™** t> T

for some by > 0.
If b = ¢ = 0, the restriction on «; in Theorem 1 can be removed.

Theorem 2. Suppose (H) andb=c =0.30€ C»* (0 < a < 1). Let p > max{%, go?ﬁ -
2}. Then there is dy > 0, such that if nonnegative ug, vo € LPt2? and ||uo||§i§ + ||vo|\§I§ <
d, there ezists a unigque solution (u,v) of (1.1) which satisfies

(1) uve C((0,+oo),Wo‘”+znw2.2+p) N C(1(0,+oo),LP+2)-

(2) Ju(®)llwasrra + lo(®)llwassz < Co(T)(luollpsz + llvallpsz)e™* ¢ > T > 0 with
bz > 0.

Remark In Theorem 1, we need that the boundary d(2 is enough smooth to let imbedding
D(A?) c C"(f1) be held. (0 < r < 2mpB - §).

2. Auxiliar results
For 1 < p < +o0,|| - ||p will denote LP(1) norm and

D(4) = WP (@) NW?*(Q), (2.1)

Au=—-Au Vu € D(A).

It is well known (see [4]) that A is a sectorial operator in L? and e t4 is the semigroup
in LP generated by A. Now, let us recall some results ([4]).

Lemma 1. Let A be as above.
(1) There exists 6 > 0, such that for0< <1

| APe~tAl, < Mpt=Pe®t (¢ > 0). (2.2)

(2) If0< B < a<1,then D(A%) c D(AP).
(3) Let Q C RN be a bounded domain with boundary 902 € C™. If0< B <1, then

D(AP) c wki(Q)) for k — % <2mﬂ—% q>p,
_ (2.3)
D(AP) c CcT () for 0<r < 2mp - %.
Define the operator B : D(A) x D(A) — LP x LP as folows:

BU(T) = (—aAu(t) — bAv(t), —cAu(t) — dAv(t)), (2.4)
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where U(t) = (u(t),v(t)),t > 0. If we denote F(U) = (f(u,v),g(u,v)), we can convert
problem (1.1) to an abstract Cauchy problem in Banach space L? x LP:

dau
— = BU(t) + F(U{(t t>0
Y —BUW+ FUE) >0 25
U (0) = (uo, vo).
Moreover, we define a family of operators S(t) : LP x LP — LP x L*
—aotA b —-atA b
S(t)(u,v) = (e (bou + v) + e (1 = bo)u — v),
ap — ay ap — ax (26)
e“““m(;u + (1 - bo)v) + e—‘“m(——cu + bov)).
ag — ai ap — aj
Here
ao = (a+d—/(a—-d)?+4bc)/2,
(2.7)

a;i = (a+d++/(a—d)?+4bc)/2,
bo = (d—ao)/(al—ao).

Since ad > ([b| + |c|)?/4 > |bc| > bc > 0, hence agp > 0,a; > 0,0 < bg < 1. When
bc =0 and a = d, we let by = 0. It is obvious that

be
bRy —— = - b =d
0 + (aO — 01)2 0, (1 0)0.0 + boal (28)
boag + (1 - bo)al = a.
If b=c =0, we define
S(t)(u,v) = (e *Au, e %4y). (2.9)

For S(t) (t > 0), we have

Lemma 2 S(t) (t > 0) is an analytic semigroup in LP X LP with the infinitesimal generator
B.

Proof It should be noted that the operators e~ ¢4 and e %*4 are the linear semigroups

in L” generated by agA and a; A respectively. It suffices to prove that for any U = (u,v) €
D(A) x D(A)

-U
lim S@u-U =BU inLF (2.10)
¢10 t
and for any U = (u,v) € L? x L
S(t+s)U = S(t)S(s)U, t,s>0. (2.11)

In fact, we have

lti]r})l t ™ (boe **Au + (1 — bg)e™**4u — u)
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e—a.,tAu - u e—altAu _
lim(by ——————) + (1 - by) i
ol )l

u

t
= —bpagAu — (1 — bp)ayAu = —aAu in LP,

and
lim ———t " (e 90t Ay - 114y
tio ap — a)
b . (e“‘"‘Av —y e ™ty — v)
j— lm —_ e —_
ay aj tio t t
b

= (agAv — a; Av) = —bAv in L.
ay — ao

Similarly, we obtain

limt ™ (e ™A (— S ut (1 - by)v)
t.0 (479} a)
+e—a|tA( —C

u+bov) — v) = —(cAu+dAv) in LP.
apg — ay

Therefore (2.10) is true. Also, by direct computation, we see that (2.11) holds.
Lemma 3 Let (H) be satisfied. Then, for any nonnegative U(0) = (uo,vo) € CJ(Q) X

C3(0), the Cauchy problem (2.5) has a unigque solution U(t) = (u(t),v(t)), such that
u(t), v(t) € C((0Twnn).c2(0)) N Cllo.Tmnn).c(n))- MoreOveEr, if Trmax < +00, then

Am (llu(@llo + llv(t)llo + [l Au(t)llo + [[Av(t)llo) = +oo. (2.12)

Here || - |lo denotes C(Q2) norm.

Proof From the assumption (H), F(U) is continuously differentiable in C(2) x C(2).
By virtue of Theorem 6.1.5 in [4], the initial value problem (2.5) admits a unique classical

solution ,

U(t) = S)U(0) +/0 S(t = 8)F(U(s))ds 0 < t < Trmax (2.13)

and if Thax < 400, then

Jim (U)o + [ BU@)]o) = +o0, (214)

so (2.12) is true, where U(t) = (u(t),v(t)). By a standard argument (see 3]), we see that
(u(t),v(t)) is nonnegative and u(t),v(t) € C2(1) (¢t > 0).

Also we need an inequality which can be regarded as the generalized Gagliardo- Niren-
berg inequality (see Lemma 3. [5]).

Lemma 4 For all u with |u|*u € W'P(Q),k > 0,p > 1, we have

lully < Cliullz= Il 7 (Jul*u)llp/(+*) (2.15)
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with a constant C independent of 2 and with § = (1+k)(N~1—p~ 1+ (1+k)/r) 1 (r 1 —¢1)
provided that ¢ > 1+ k and

(i) 1<r<q¢<(1+k)Np/(N-p)if N>p;

(i) 1<r<g<+ooif N=p>1;

(1)) 1<r<qg<+4+o0tfl1<N<p.

3. Proof of Theorem 1

In this section, we shall assume that all conditions in Theorem 1 are satisfied. Our
starting point is the following estimpates.

Lemma 5 Let (u(t),v(t)) be a smooth solution of (1.1) with nonnegative ug,vo € C3(02).
Then there ezists dy > 0, such that if ||u(t)||2 + ||v(1)||3 < do, we have for 0 < t < Thax

lluollz + llvoll3 < do (3.1)

and
lu(®)]Z + lv(®)13 < Clluoll} + llvollz)e™"** (3.2)

with C,r; > 0.

Proof Multiplying the first equation in (1.1) by u(t), we have

li/ uldr = —a/ |vu|2d:t:—b/ vuvvdz+/ fudz. (3.3)
2dt Jn n 0 n
Similarly,
li/ vidr = —d/ | v v|¥dz - c/ Vqud:z+/ gudz. (3.4)
2dt Jn 0 n n

Adding these identities and using Cauchy-Schwartz’s inequality, we obtain

1d b
2 [ vz + @ - ) [ g upa
f ; a (3.5)
+(d — |—l——icl)/ | 7 v|%dz < / |fu+ gv|dz.
2 n 0
By virtue of Young’s inequality, we have
|f - ul < ka(jul™*0 + o F02)|u] < ka(Jul** + o702 + JufTo2) (3.6)
and
|9 - v < Fa(Jul?*o0 + JofFee 4 fu[PFe). (3.7)

4 N
Because of 0 < ap < ' We can choose r € [1,2], such that r > QOT. From Lemma
4, we have

[ 1+idz < cljul¢-0aE+ed) gyl e+ (338)
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1 .
with 6; = L _)(F ~ 3 + =)71. It follows from the assumption on .r that 6;(2 +
r ; r

a,-) < 2.
Let 5; = 2 — 6;(2 + ;). By Sobolev’s inequality, we obtain
[ufl{* =00+ = |lujj2é|[u]lf < Cllullg*llully” < Cllull3*ll ¥ ullz'. (3.9)

Here and in the following we write C or C; for various positive constants which are inde-
pendent of u and v.

Combining (3.8) with (3.9) yields

[ 1ufPteidz < Cllulls 7 uli (210
Q
Similarly,
[ 1wz < cllolz v vl (3.11)
1]

If we denote A = 2min{a — lbl’;lcl,d - IbI;ICI}, (3.5) can be written as follows

%(IluH% +1vlI) + Al 7 ullf + 1| 7 vll2)

. (3.12)
< CQ_(lully’ + lIvlIZ))Al & ullz + 1| 7 vlI3)-
i=1
Using e-Young’s inequality and the fact that a; < ag(i = 1,2,3,4), we see that
y . s A
C(llully* + lIvll59) < Calliullf + llvi3)>/* + s
Thus, we drive
d ag A 2 2
72 < (Cre7 (1) = )l v u)llz + 1| 7 v(9)l[2), (3.13)
where g(t) = ||u(t)||2 + ||v(¢t)]|3, constant t > 0,C; > 0.
Now we make the assumption that
A [ 4
©(0) = [luoll + [lvollz < (2—(']—1)2/ ©=do >0. (3.14)
Then, (3.14) and (3.13) implies that ¢(t) is a nonincreasing function and
o(t) < (0), 0<t < Tmax-
Also, we find that
dp 2 2) < 3.15
=5 Telllv ez +l v o(®)]z) <0 (3.15)

with e; =  — Cip 7 (0) > 0.
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Since u € W}'(11), we have (see [6])

1
lu(®3 < | vu®)llz, vl < W il oI, (3.16)
where A\; > O is the first (smallest) eigenvalue of the problem

Aw+Aw =0 1
w=0 ondf.

Applying (3.16) to the left side of (3.15), we get
d
d—f +erhp(t) < 0. (3.17)

It implies that
p(t) < <p(0)e_“'\‘t 0 <t < Thax-
That is
w113 + o3 < (luoll3 + llvoll3)e™™* 0=t < Trmax (3.2)
with ry = €1A1 > 0.
Next, using the estimate (3.2), we have

1 N N
Lemma 6 Under the assumption of Lemma 5 and max{2 yp- ao } < B <1, we get
for any 0 < T < Tipax
4P u(@)l]z + | AP v(e) ]|z < Ca(T)(|luollz + llvollz)e ™™ 0 < T <t < Timax, (3.18)

where m 1s a constant in Theorem 1 and b; > 0.

Proof At first, we note that (2.13) can be written as follows

b b
__ _—aotA —a)tA _ _
u(t) =e (bouo + pr— vo) + € ((1 = do)uo Py vo)
t
+ [ el o (u,0) + ——g(u,v))ds
0 ap —ay
t
+ / e =A((1 ~ bo) f(u, v) — o(u,0))ds ¢ >0, (3.19)
0 ap — ay
v(t) = e—aotA( u.o + (1 - bo)vo) altA( ¢ uo + bo‘vo)
ap — a1

f(u,v) + (1 — bo)g(u,v))ds

f(u,v) + bog(u,v))ds t>0. (3.20)

+/ —ao(t S)A(
+/ e—al(t—s)A(
0

ap — ay

ap — a1
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By (2.2), there exist C > 0 and § > 0 such that

b —a _
|| AP e (bouo + 0 vo)llz < Ce™ % (Jluollz + l|voll2)t ™"

- ay

and

|APeoo(t=)4(py f + 9)llz < C(t = 8) P C=)(| )]z + llgll)-

ap — a1

Similarly, we have

|APe™ 1 A4((1 - bo)uo + vo)llz < Ce % (Jjuollz + [|voll2)t™*

ap — ay

and

1481 =9A (1~ bo) f + ——g)l2 < C(t - 8) P~ 112 + fl]2)-

apy — ax

Using these inequalities in (3.19), we obtain

|APu(t)]lz < C(|luollz + [lvoll2)t Pe 0%

¢ (3.21)
+0 [t 9P (1l + gll)de.
The assumption (H) gives
||f“2 < 2k1(”“”;?_1(:—lal) + llvllé?iizag))’ (322)
lollz < Zka(llullz(iius) + lvll2i3e0)-
Now, we appeal to the following inequality (see [7] or [8])
lllz(reay < CllAPullg[lullz™" (3.23)

‘N ~
4(1(:'_—(1'_)13. Since 8 > %\’_’ we have (1 + a;)f; = a‘;ﬂ

1
D(AP) c whi(q), (8 > 5)» we find that

with 6; =

< 1. By the imbedding

a;N a;N
1+a; ; 1- 2% it
lolsisg < Cllulliuly & 145, 20
ait 48 1_ﬂ‘iﬂﬁ :] :Al-ﬂﬁ i 4B,
< Clluflz*llA%ull; * [|A%ull*” = Cllully* | A% u|l2.

There is a similar estimate for v. Thus from (3.2) and above inequalities, we can drive

147 u(t)ll2 < C(lluollz + llvoll2)t~ e~

¢ (3.25)
+ C/ (¢ — 8) Pem 2ol (|| APu(s) ||z + (| 4% v(s)|l2)ds
0
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and

1A% v(®)ll2 < C(lluollz + [|vo||z)t ="~

t (3.26)
+C [[(t=9)Pememt et (AP u(s) |2 + | 4P 0(s) 1) ds

for some 6; > 0.
If we let 1(t) = ||APu(t)||2 + || APv(t)||2, then (3.25) and (3.26) give

01() < Cllualla + oo} Peo% +.C [t = o) ool bty (o)ds.  (321)
This inequality implies, for any 0 < T < Tax (see [7]),
e1(t) < C1(T)(JJuollz + [|vo'2)e™ ™ 0 < T <t < Trax (3.28)
with some b; > 0. It is (3.18).

The proof of Theorem 1. Since 30 € C™, & < B < 1, it follows from Lemma 1 that

Y 4m

D(AP) c CT(Q) if 0 < r < 2mpB — . Hence, from (3.18) we obtain
lu(®)ller @) + lv®)llor@y < Co(T)(luollz + [lvollz)e ™ 0 <T <t < Trmax.  (3.29)

Now we remove the assumption on ug,vy € C3(Q). Suppose that ug,vy € L? and
[luol|3+]|voll2 < do. We choose ug ., v0n € C3(€2) in such a way that ||ug |3+ ||vo |2 < do.
For any n = 1,2,..., choose ugn,von € C3() and uon — wo,v0n — vo in L% Let
(un(t), vn(t)) be the corresponding solution of (1.1) with u,(0) = ug s, v (0) = vg pn,. From
(3.29), we find that

lun(®ller @) + lva®llcr @y < Cr(T)(luonllz + llvonll2)e"*
< Co(T)(uollz + [lvoll2)e™** 0 < T <t < Trmax.

Here C1(T),C:(T) are independent of n. From the above estimate, we can conclude that
tn(t) and v,(t) converge as n — oo to the functions u(t) and v(¢) compact uniformly on
Q2 x (0, Trmax) respectively. Hence f(up,v,) converges to f(u,v) and g(u,,v,) converges to
g(u,v) in C(€1) as n — oco. Moreover we find that

t
/ e_“"(t_’)Af(un,vn)ds
0
and

t
/ e_“"(t_’)Ag(u,.,vn)ds
0

are uniformly integrable in L? with respect to n. From these facts, it is easy to see that
u(t) and v(t) satisfy (3.19) and (3.20). Therefore, the estimates (3.2) and (3.18) must be
true for u(t) and v(t) with ug, vo € LZ.

From (2.3) and (3.18), we have

u(t) lwaa + [o@llwea < CT)(uollz + llvallz)e™* 0 < T <t < T
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This inequality implies Tax = +o00. That is to say, (u(t),v(t)) exists globally. The
uniqueness can be proved as in [8].
The proof Theorem 1 is now completed.

4. Proof of Theorem 2
When b = ¢ = 0, the problem (1.1) takes on the following form

u=alu+t+ f(u,v)

ve=dA v+ g(u,v) in 2 x (0, +o0) (4.1)
u=v=0 on 90 x (0,+o0) '
u(z,0) = uo(z),v(z,0) = vo(z) in Q.

Suppose that nonnegative ug, vy € Co () and (u(t),v(t)) is a nonnegative smooth-solution
of (4.1) for 0 < t < Tmax,p > max{X e N — 2}. Multiplying the first two equations in
(4.1) by uP*! and vP*?! respectively and mtegramg on {1, we see that

1 d 4a(p-+-l)/
- - p+2 ke Y S B (r+2)/2)24
p+2dt/nu T al Ve e

(4.2)
— /fup+1d:z:§ kl/(up+2+a1 _|_up+1v1+a2)dx
Q 0
and
1 d 4d( 1)
-——2&;/0”+2d$+—p+ /|V p+2/2| dz
p+ a (p+ (4.3)
— /gvp+1dI < kz/(vp+2+a4_+_u1+aavp+1)dz.
0 1t
The application of Young’s inequality yields
|up+lvl+°'21 < |u|p+2+°’2—+—|u|p+2+a2, 44
va+lu1+a3| < |u|p+2+a3 + |u|p+2+a3. ( . )

Thus we obtain

d 2 2, , 4(p+1)
E(Hu”iiz + H HZI;) p+—2(a|l v u(P+2)/2H§ + d” \V) U(P+2)/2H§)
. (4.5)
< C/;] Z(}u|p+2+a.~ + |v|p+2+a,-)dx
for some C > 0.
Now, applying Lemma 4 and putting k = &, we find that
20; (p+2+a;)
[t teids < OO gyl 0 (46)
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with 8; = — &

2(p + 2+ o) '
N 20; 2 ; ;N
Since p > a02 — 2, we see that 0 < §; < 1 and .(p++2+a,) = a;z <2. By
p p
Sobolev’s inequality, we have
1-8,)(p+2+a; p2- N
lull§" e = ulp iy,
. 2- 2N
< ||“||§'+2||V“(p+2)/2”2 2
Thus,
[ e < Cluliall v w2, (4.7

Obviously, there is a similar estimate for v. Hence, it follows from (4.5) that

d 4(p+
g 12 + lIvl532) + (”+ : D (ol v w022 4 ] olP+D/22)

4
< C Y (llullpiz + i) (Il v w®HD2E + || 7 o@D/ 3)
i=1

< C(|lullgF + o) s (| 7 w22 4 || 7 o+ D/2|E). (4.8)

The constant C in (4.7) and (4.8) may be different, but they are all independent of u and
v.

From (4.8), we can choose a constant u > 0 such that

d =20 (p+2)
Ze3(t) S (Cos () - (I vw 7 I} 3 0<t<Tma (49
Here p3(t) = [|u(t) (517 + [lv()]p32-
After we make the assumption
p+2
©3(0) = (lluollpiz + llvollpi2) < ( ) e =dy, (4.10)
we can derive that
p3(t) < p3(0) < d;
and also 4
+2)
Zes(t) +ealll v 2)<0 (411)

for some £3 = p — [p3(0)]0/(P+2),
(4.11) implies (see (3.16), (3.17))

‘p3(t) < ‘PB(O)e_elety 0 <t < Thax

with €2A; > 0. That is

2 2 2 2y _—
lu(®)lip32 + o532 < (luolliz + llvollpTz)e = (4.12)
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or
[u(®)llp+2 + [[v()llp+2 < Cl[uollp+z + [lvollp+2)e™* (4.13)

withC>0andr2:53$,j>O.
Next, we derive the estimates for ||u(t)||w2.,+2 and ||v(t)||w2.s+2. We know that the
solution of (4.1) is equivalent to u,v € Cyjg , o0} ,c(a)) and

t
u(t) = e *4ug + / e 2t 1y, v)ds
0

t (4.14)
v(t) = e *4ug +/ et 4g(u, v)ds.
0
Because of p > max{z, a02 — 2}, we can choose 3 such that max{ 2((:04‘ 2)’ 2 }

< B < 1. By (2.2), we have

t
14Pu(@) ez < 4% Auollpea+ [ 14567941 (u,0) p1ads

IA

t
CrPe luollpsz +C [ (1= 8) P 055
0

and
t
1470 (Ollps2 < CPe luollpz +C [ (¢ = 8) e gy s,

By assumption (H), we find

14+a, 1+
||f||P+2 < 2k1(||U.|| (p+2)(1+a,) + |[v||(p+22) 1+a2)) (4‘15)
1
lollore < 2Ra(lult S sy 11 S s me))
By virtue of the inequality (see [7] or [8])
llull(o+2)(1+as) (4.16)

. 1 N . . .
with 6; = ﬁ(;jfz - (m)—%m)N = m, as in (3.24) we can derive the following

estimate

1 ) v
[lwll p++az)(1+a,.) < C||u||s+2||Aﬁu”p+2- (4.17)
Similarly,
ol 2 ey < CllolEsall AP (4.18)

From above inequalities, we obtain

[APu(t)]lprz < Ct™Pe™|jugllp+s

¢ (4.19)
+C [t = o) e e (AP u(s) 2 + | 4P0(5) pe2)ds

and
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[A%v(@)llpr2 < CtPe™®|Juollps

‘ (4.20)
+ C/ (8 = 5)PemBUdemr22(|| APu(s)[lpra + | AP0 (s)llp+2)ds
0
with positive constants u; and us.
Let
0a(t) = | AP u(t)llp+2 + | AP v(t) lp+2
and
D = min{ab,dé}, E = min{uy, p2}-
Then, it follows from (4.19) and (4.20) that
t
©4(t) < C(|luollp+z + [[vollp+2)tPe™ P! + C/O (¢t — s)PePlmde™Bop, (s)ds.
This inequality implies, 3 by > 0, such that for any 0 < T < Tpax
oult) = 14%u(Olpsz + 11 450(0) s wz1)
< C(T)(|luollp+2 + llvollp+2)e™*, 0 < T <t < Trnax-
1
Note that 8 > 2" We use (2.3) and obtain
(e llw s + [0()lwarsa 422

< C(T)(Jluollp+2 + llvollp+2)e " 0 < T <t < Tax,

and

lu®llcr(@y + lv®)ller@y < C(T)(luollp+z + llvollp+2)e™*** 0 < T <t < Trnax  (4.23)

with 0 < r < 48 — %

From (4.22), ws see that Trax = +o0o. This means that (u,v) is a global solution
of (4.1). We note that the estimates (4.22) and (4.23) are made under the smoothness
assumption on up and vg. We can remove this smoothness as in the proof of Theorem 1.
The uniqueness of the solution follows immediately from the Lipschitz continuity of f and
g- The proof of Theorem 2 is completed.
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