the Lemma 2.2 of {5], P,(u) = P,(v) = 1. By Theorem 2.3 of [5], 0 € Pp,(z). Since Y is
a P,-homogeneous imbedded subspace, we have P,(z + u) = P,(z + v). We may assume
that A = P,(z + u) > 0. By Lemma 2.1, we have

P (z+ u) = APyayr(z + u) = Pr(z + v) = APy (2 +v).

So Py(ayr(z+u) = APy(a)r(z+v) = 1. By Lemma 2.1, one has f(z+u) = ¢(A)r = fz+v).
So Y is an f-homogeneous imbedded subspace of X. a

Remark By Theorem 3.3, if the condition (F2) is replaced by (F1) in Lemma 2.3, 2.4
and Theorem 3.1 and 3.2, we have the same conclusions respectively.
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f-homogeneous Imbedded Subspaces
in Locally Convex Spaces
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Abstract. In this paper, we introduce the concept of the homogeneous imbedded
subspace in locally convex spaces and study the approximation properties of these sub-
spaces.

Key words: f-homogeneous imbedded subspace, f-proximinal subspace

1. Introduction

Let X and X' be a pair of linear spaces put in duality by a bilinear form (,). We
assume that this bilinear form (,) is separating, i.e., for each z € X and z # 0, there
exists y in X' such that (z,y) # 0 and, for each y € X' and y # 0, there exists an z € X
such that (z,y) # 0. A topology on X is said to be compatible if it is a separated locally
convex topology for which continuous linear functions on X are precisely of the form

(-,y):z— (z,y), for ye X"

Let f be a continuous convex function defined on X and satisfying f(0) = 0. Given a
nonempty Y of X and z € X, let

fr(z) = inf{f(z-y); yeY};
Pi(z) = {yeY; fr(z)=/(z-v)}

The set-valued mapping Py is called f-metric projection supported on Y. Y is said to be
f-proximinal (resp. f-Chebyshev) if P;(z) is nonempty (resp. Py(z) is a singleton) for
each z € X.

For r > 0,let S, = {z € X; f(z) < r} denote the sub-level subset of f, and
P,(z) = inf{A > 0; =z € AS,} denote the Minkowski gauge of S,. Then P, is a non-
negative continuous sublinear function.

In section 2, we obtain the element properties of homogeneous imbedded subspace.

In section 3, we investigate the f-approximation with respect to a homogeneous imbe-
ded subspace and the f-Chebyshev subspaces.

Let X be locally convex and f a real function defined on X. Consider the conditions:

*Received Dct. 20, 1992, Supported by the National Science Foundation of P.R. China.
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(F1) There exists a continuous bijection ¢ : Ry — R, such that, for any z € X and
A >0, f(Az) = ¢(A)f(z) and f is continuous and convex.

(F2) f is a symmetric sublinear function.

Obviously, if there exists an z € X\ {0} such that f(z) > 0, then v is a convex function
and ¢(t) — oo as t — oo.

2. Preliminary and notations

Lemma 2.1 (D.V.Pai and P.Govindarajulu [8]) Suppose f satisfies the condition (F1)
and 0 = f(0) < f(z). Then for any a,8 > 0O,

Sa = (1/B)S¢(g)ar  Pay = BPy(p)ay-

By this Lemma, we have Pp, y(z) = Pp,,y(z), for any z € X and o, > 0.
If X is a normed linear space and f is the norm on X, then the following definition is
as that in [1].

Definition 2.2 Let X be a locally convezr space and f a real function defined on X. Y 1s

an f-proziminal subspace of X. Y is called to be an f-homogeneous imbedded subspace of X

if, foranyz € X andu,v €Y, 0€ Py(z) and f(u) = f(v) imply that f(z+u) = f(z+v).
Firstly, we consider some properties of homogeneous imbedded subspace of X.

Lemma 2.3 Let f be real function defined on X which satisfies the condition (F2) and
Y an f-homogeneous imbedded subspace of X. Given z € X,u € Pyr(z) and w € Y, if
f(z —y) < f(z — w), then for everyy €Y, we have f(u —y) < f(u— w).

Proof Assume that the conclusion is fales. then there exists a y € Y such that f(u—y) >
f(u—w).

Case 1 f(u—y) = f(u— w). Since u € Py(z), we have 0 € Ps(z — u). Since Y is an
f-homogeneous tmbedded subspace of X and u,w,y €Y, we have

flz—y) = [fl(z-u)+ (u—y)]
= fl(z —u) + (u - w)]
= f(z —w).

Thas 1s tn contradiction with the assumption.

Case 2 f(u—y)> f(u—w). If f{u— w) =0, then

fla-—w) = fl(z-u)+(u—w)
— S+ fu-w)
= fy(z).

Since w €Y, w € Py(z). This is impossible since y€ Y and f(z — y) < f(z — w).
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Now, we assume that f(u — y) > f(u — w) > 0. Then there exists a 0 < to < 1 such
that

f(u—w)=tof(u—y) = flto(u - y)].

Since Y is an f-homogeneous imbedded subspace of X and u € Py(z), we have f(z —u) <
f(z — w). Hence we have

fz—w) = fllz—u)+ (v - w)

fl(z = u) + to(u - y)]

flto(z — y) + (1 — to)(z — u)]

tof(z - y) + (1 - to)f(z - u)
tof(z—y)+(1-t)f(z - w)

It implies that tof(z — w) < tof(z — w). This is impossible since t; > 0 and f(z — y) <
f(z — w). O
Lemma 2.4 Assume that X, f and Y satisfy the conditions of Lemma 2.3. Givenz € X,
then 0 € Py(z) if and only if, for any u,v €Y, f(u) = f(v) implies f(z + u) = f(z + v).

i

IN A

Proof The necessiarity is the definition of homogeneous imbedded subspace of X.

Since Y is f-proximinal, so Py(z) # @. Let u € Ps(z). Since f is symmetric, we have
that f(u) = f(—u). By definition, we have f(z + u) = f(z — u). Since f(z + u) = fy(z),
—u € Py(z). Hence

1@ =+ 5 < Uz + W+ f(= - w)/2= fr(2)-

Thus 0 € Py(z). O

Lemma 2.5 Let X be a locally convez space, f a real function defined on X which satisfies
the condition (F2) and Y an f-prozriminal subspace of X. Suppose that for £ € X and
u,v €Y, when f(u) = f(v) =1 and 0 € Py(z), one has f(x+u) = f(z +v). ThenY s
a homogeneous imbedded subspace of X.

Proof Let z € X such that 0 € Ps(z) and u,v € Y such that f(u) = f(v). If f(u) =
f(v) =0, then
flz+u) < f(2) + f(v) = f(z), and f(z)})=f(z+u—u) < flz+u)

Hence f(z) = f(z + ). Similarly, f(z) = f(z + v). So f(z + u) = f(z +v).
Now, we assume that f(u) = f(v) = r > 0. Then f(u/r) = f(v/r) = 1. obviously,
0 € Py(z/r). By assumption, we have

fe-w/fr = fE-2

= f(:— =)= f(z—v)/r.

So we have f(z + u) = f(z+ v) and Y is a homogeneous imbedded subspace of X. O

-
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3. The Main Theorems

Theorem 3.1 Let X be a locally conver space, f a real function defined on X which
satisfies the condition (F2) and Y an f-homogeneous imbedded subspace of X. ThenY is
f-Chebyshev subspace of X if and only if f(y) > O when y € Y\ {0}, that 1s, the restriction
fly of forY isanormonY.

Proof LetY be an f-Chebyshev subspace of X. Suppose that there exists a yo € Y \ {0}
such that f(yo) = 0. Let z € X \Y. Since Y is f-proximinal, Ps(z) # #. Let u € Ps(z).
Let o = z — u. Then 0 € Py(zo). Hence f(zo) = fy (zo) and

f(zo + w0) < f(zo0) + f(y0) = f(20) = fr(zo)-

This implies that —yo € Py(zo). This is in contradiction with Y being an f-Chebyshev
subspace since 0, —yo € Ps(zo) and yo # 0. We complete the proof of necessarity.

To show the sufficience, suppose that Y is not an f-Chebyshev subspace. Then there
exist z € X and y;, y2 € Py(z) such that y; # y;. Let zo = z—y; and yo = y2 — y1- Then
yo # 0 and 0, yo € Ps(z0). Thus we have

f(zo) = fr(2,) = f(z0 — yo)-

Since f is symmetric, we have f(yo) = f(—yo). Since 0 € Py(xo — yo) and Y is f-
homogeneous imbedded subspace of X, we have

fr(zo) = f(z0) = f[(zo — o) + vo| = f(zo — 2y0).

So 2y € Py(z). If kyo € Py(zo) for k = 1,2,---,n where n > 3, then nyp, (n — 1)y €
Pg(zo0). Hence 0 € Pg(zo — nyo). f(yo) = f(—yo) implies that

fr(zo) = flzo — (n — 1)yo
= f((zo - nyo) + yo
= fl(zo — nyo) + (—o)]
= flzo — (n+1)yo]-

Therefor, (n + 1)yo € Ps(zo). By induction, we have nyy € Py(xo) for every integer n.
Since

nf(yo) = f(nyo)= fl(~zo+ nyo) + zo|
< flzo) + f(z — nyo)
= 2fY (xO)a
we have 0 < f(yo) < 2fy(z0)/n — 0 when n — oo. So f(yo) = 0. This is in contradiction
with yo # 0 and the assumption. O

Theorem 3.2 Let X and [ satisfy the conditions of Theorem 3.1 and Y an f-proziminal
and closed subspace of X. ThenY 1is an f-homogeneous imbedded subspace of X if and
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only if, given z € X, y € Py(z) satisfing f(y) # O, for every u €Y, when f(u) = 1, one
has

y —uj.
f(x—m)Sf(I )

Proof (=). Assume that there exists a up € Y such that f(up) = 1 and f(z — ug) <
f(z - T(ﬂ) Since ug, y/f(y) €Y and y € Py(z), by Lemma 2.2, we have

fly—w) < fly- %)
= 1= 75w
= |f(y)-1|. (1)
Since f(ug) = 1, we have
F(y) = f(y — uo) + o] < f(y — wo) + f(uo) < f(y — o) +1. (2)
Similarly, we have
1= f[(uo - y) +y] < fuo —y) + f{y) = f(y — wo) + f(v) (3)

By (2) and (3), we have |f(y) — 1| < f(y ~ uo). This is in contradiction with (1).

(<=). Assume that Y is not a homogeneous imbedded subspace of X.

By Lemma 2.4, there exist z € X and u,v € Y such that 0 € Py(z), f(u) = f(v) =1
and f(z+u) # f(z+v). Without loss of generality, we may assume that f(z+v) < f(z+u).
Since }irgf(v-{-tu) = f(v)=1,s0 f(v+tu) > 0 when 0 < t < § for some § > 0. Let

0 <& <min{f(z+u) - f(z+v), §}/3. Then we have

f(v+eu) >0, (4)
flz+u) > f(z+v) + 2e. (5)

Since f(v+eu) < f(v)+ef(u) =1 +e¢, that is,f(v + eu) — 1 < €. Since
1=f(v)=fl(v+eu)—eu] < f(v+eu)+ef(u)= f(v+eu)+e.

Hence we get

|f(v+eu) -1 <e (6)
This implies that
flz—u) = flz—(e+ f(v+eu))u+ (e+ f(v+eu) — 1)y

= flz—(e+ f(v+eu))u] + e+ f(v+ev)—1]

< flz=(e+ flv+eu)u+e+|f(v+ev)—1]

< flz— (e + f(v + ew))u] + 2,
that is,

flz - ) =26 < flz - (e + f(v-+ cu)ul. ™
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By (4), let zo0 = (z + eu)/f(v + eu) and y = eu/f(v + €u). Since 0 € Py(z), we have
0 € (z/f(v + €u)). So y € Ps(zo). Obviously, f(y) > 0 and y/f(y) = u. By (7), we have

flzo—y/f(y)) = flzo—u)

l(z - ew)/f(v+ew) — 4l
(1/f(v+eu))f(z+eu— f(v+eu)u)

(/@ - w) - 26)/f (v + eu)

f(z - 0)/ 10+ u)

fl(z+eu) — (v+eu)]/f(v+eu)

fl(z+ eu)/£(0 + u) — (v + eu)/ £ (v + ew)]
floo - (v + ew)/ 1 (v + eu)].

Since f[(v+ eu)/f(v+ eu)] = 1. This is in contradiction with the assumption. Thus Y is
an f-homogeneous imbedded subspace of X. a

Hvov il

v

Theorem 3.3 Let X be a locally convex space and [ a real function defined X which
satisfies the condition (F1) and f(0) = 0. ThenY is an f-homogeneous imbedded subspace
of X if and only if, for everyr > 0, Y 1s a P,-homogeneous imbedded subspace of X.

Proof By the Theorem 2.3 of [5], Y is f-proximinal if and only if Y is P,-proximinal for
every r > 0.
Assume that Y is an f-homogeneous imbedded subspace of X. Given r > 0, let
z € X and u,v € Y such that 0 € Pp,(z) and P,(u) = Pr(v). If P,(u) = 0, evidently,
f(u) = f(v) = 0. So we have f(z + u) = f(z + v). Assume that P,(u) = X # 0. By the
Lemma 2.1,
Pr(u) = APy(a)r(u) = APy(a)r(v). (8)
By the difinition of A, we have Py()r(u) = Py()-(v) = 1. By the Lemme 2.2 of [5],
f(u) = f(v) = ¢¥(A)r. By the Theorem 2.3 of [5], 0 € Ps(z). Since Y is a f-homogeneous
imbedded subspace, we have f{(z +u) = f(z +v). If f(z+ u) = 0, obviously, P.(z+ u) =
P,(z + v) = 0. Suppose that @ = f(z + u) > 0. By the Lemma 2.2 of [5], we have
Pa(z +u) = Pa(z+v) = 1. Let § = ¢~ (r/a). Then 8 > 0 and ¢(B)a = r. By Lemma
2.1,

P (z+u) = Pypgjalz+u)
= B 1Py(z - +u)
= B 1P, (z+v)
= Pygalz+v)
= P(z+v).
Thus Y is a P,-homogeneous imbedded subspace.
Assume that, for every r > 0, Y is a P,-homogeneous imbedded subspace. Let z € X

and u,v € Y such that 0 € Py(z) and f(u) = f(v). Obviously, if f(u) = 0, then P,(u) =0
for every r > 0. So P,(z 4+ u) = Pr(z+ v) for every r > 0. Assume that r = f(u) > 0. By
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the Lemma 2.2 of {5], P,(u) = P,(v) = 1. By Theorem 2.3 of [5], 0 € Pp,(z). Since Y is
a P,-homogeneous imbedded subspace, we have P,(z + u) = P,(z + v). We may assume
that A = P,(z + u) > 0. By Lemma 2.1, we have

P (z+ u) = APyayr(z + u) = Pr(z + v) = APy (2 +v).

So Py(ayr(z+u) = APy(a)r(z+v) = 1. By Lemma 2.1, one has f(z+u) = ¢(A)r = fz+v).
So Y is an f-homogeneous imbedded subspace of X. a

Remark By Theorem 3.3, if the condition (F2) is replaced by (F1) in Lemma 2.3, 2.4
and Theorem 3.1 and 3.2, we have the same conclusions respectively.

References

[1] D.Amir & Z.Ziegler, Relative Chebyshev Centers in Normed Linear Spaces, Partl,
J.Approx.Theory, 29 (1980}, 235-252.

[2] P.Govindarajulu & D.V.Pai, On properties of sets related to f-projections, J. Math. Ann.
Appl., 73 (1980), 457-465.

[3] D.V.Pai & P.Govindarajulu, On set-valued f-projections and f-farthest point mappings, J.
Approx. Theorey, 42 (1984), 4-13.

[4] B.N.Sahney, K.L.Singh & J.H.M.Whitfield, Best approximations in locally convex spaces, J.
Approx. Theorey, 38 (1983), 182-187.

[5] Wenhua Song, A remark on the approximation in the locally convex spaces, Approximation,
Optimization and Computig: Theory and Application, A.G.Law & C.L.Wang (eds.), pp. 179-
180, Elsevier Science Publishers B.V. (North-Holland), IMACS, 1990.

BEHOZEHPHFRENTZIE
KX 4
(KEBIKEHENEFRF K % 116024)

EEXH, BFREAFEARSIATRESZOS, FHRTEMNT E
if ¥ R

— 213 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



