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Stability of Travelling Waves *
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Abstract An extended system was introduced in [1] for the computation of travelling
wave (or rotating wave) solutions of nonlinear ODE's with O(2) symmetry. In this paper
we show that the stability of the travelling waves can be determined by the eigenvalues
of the extended system in a way similar to the situation for the stability of usual steady-
state solutions.
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1. Introduction

This paper is concerned with the stability of travelling (or rotating) wave solutions of

the ODE .

u
— = f(u,A), t>0 1.1
dt (u) )7 t — H ( )

where f is a C? mapping from U x R into U and U a finite dimensional Ililbert space
with inner product (-,-) (An extension to infinite dimensions can be done as in Section 5
of 8] or Section 6 of [1]). We assume that [ is symmetric (cquivariant, commutable) with
respect to an action of the group O(2) on U, that is,

vf(u,A) = f(yu,A),Vy € O(2), ueU, (1.2)

where O(2) is generated by rotations ro, € R, and a reflection s satisfying for all o, 8 € R
(where 1 stands for the group identity):

Tat2r = Ta, Ta+B = Talpg = T4Ta; (1.3(1)
32 =719 =rx= 1) 8Tq = TS, (131))
(yu,yv) = (u,v), Vy€0(2), uv,vel. (1.3¢)

A travelling wave solution (TW for short) of (1.1) is a special periodic solution in the form

v(t) = rycu, (1.4)

*Received March 11, 1992.
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where w € R, the velocity of the wave, and u € U are independent of time ¢.

TW is one of the two most common periodic solutions of (1.1) (the other is the standing
wave solutions, cf. [2]). Its bifurcation is studied by many authors ([1],{2],[3],(8]). In
particular, results on its stability can be found in e.g. [4] and [5]. In this paper we re-
attackle the stability problem through a new approach in terms of an extended system (see
(2.13) below) introduced in [1]. This extended system (ES in short) takes into account the
existence of the solution orbits due to the O(2) symmetry and the fact that TW satisfies
a steady-state equation (see (2.4) below, also [1]). The virtue of ES for the computation
of TW has been demonstrated in [1]. We show in this paper that ES is also good for
stability analysis in that the (orbital) stability of TW can be determined simply by the
eigenvalues of ES very similar to the situation for the stability of the usual steady-state
solutions of nonlinear ODE's. Our results will prove useful when one considers the stability
in bifurcation problems of TW. See e.g. [7], where a kind of period-doubling bifurcation
of TW is discussed.

In the next section we provide some preliminary material. In Section 3 we give the
main results. We shall show that ES always has eigenvalues 4:1/Cj for certain constant
Co € R. TW is stable if all the other eigenvalues of ES have negative real parts, and
unstable if an eigenvalue other than +./Cjy has a positive real part. The crucial point
is an explicit expression (see (3.3)) of the Floquet operator of TW which determines the
stability.

2. Preliminaries

Let us define 5
—(raz), (2.1)
o

A= 1. (2.2)

The linear operator A will play an important role in our analysis. By (1.3} it is easy to
deduce that (cf. Lemma 2.1, [1]):

.
raIT =

rl =raA, roA= Ar,, sA= —As. (2.3)

A direct consequence of (2.3) and the equivariance condition (1.2) is that (cf. (2.5) in [1]
and Lemma 1.1, [5]) (v(t),A) = (rweu, A) is TW if and only if (u,w, A) satisfies
f(u,w, A) = f(u,A) —wAu =0. (2.4)

Hence we also call (u,w,)) a TW if it solves (2.4). The significance of this observation is
that (2.4) is a ”steady-state” equation and so it is amenable to the standard steady-state
bifurcation theory. We notice that fdeﬁned by (2.4) is equivariant with respect to ro but
not s for w # 0. This accords with the fact that TW breaks the reflection symmetry while
preserves the rotation symmetry.

Note that if (v, w, ) is TW then so are (rqu,w, ) for all a € R due to (2.3),(2.4) and
(1.2), which form a solution orbit generated by (u,w,A). Now inserting (rou,w, ) into
(2.4) and differentiating it in o at o = 0 yields

fu(u, w, ) Au = 0. (2.5)
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Hence we always have

Au € Null(f, (v, w, A)) (2.6)

so long as (u,w, A) is TW. In face Au is the tangent vector of the solution orbit (ru,w, )
at a = 0. We always assume
Au # 0. (2.7)

We remark that
Au#0 & u & Fix(SO(2)), (2.8)

where SO(2) C O(2) is the subgroup generated by rotations r,,a € R, and Fix(Z) denotes
the fixed point subspace of U for any subgroup ¥ of O(2):

Fix(2) :={ueU, yu=u,Vye X} (2.9)
(2.8) can be easily deduced by noting (2.3). We also always assume
w #0. (2.10)

namely, we are interested in TW with nonzero velocity.
In order to isolate a point on the orbit we require

lou =0, (2.11)
where [y is some linear functional on U satisfying
lpAu # 0. (2.12)

Putting (2.11) and (2.4) together leads to the extened system (see [1])

F(z,)) := ( f(u, ) —whu ) =0, (2.13)

lou

r=(v,w),F: XxR—-X:=UxR.

This is the extended system which will play a central role in our analysis.
We end this section with a simple lemma. Its proof is simple and omitted.

Lemma 2.1 If (u,w,)) s TW and
Null(fy(u,w,))) = span(Au), (2.14)

Au ¢ Range(fu(u,w,/\)), (2.15)

then the Jacobian F,(z,)\) is an isomorphism and hence there ezists a unique solution path
(2(A),A) of (2.18) with 2()) = = = (u,w), corresponding to a unique (up to the solution
orbit) path of TW near (u,w, ).

3. Stability of TW
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In this section we first point out in Lemma 3.1 that the Floquet operator (or the
monodromy operator) M of TW can be expressed explicitly in terms of fu = fu — wA.
Then Lemma 3.2 reveals the relationship between the cigenvalues of fu and F;. Finally we
present the main Theorem 3.3 concerning the stability of TW as a consequence of Lenmunas
3.1 and 3.2

Let v(t) = ryiu be TW with a (minitnum) period 7. The corresponding Floquet
operator can be defined as (see Section 7.2 [6)):

M = ®(T), (3.1)
where ®(t) : R — L(U) solves the matrix initial value problem

‘i—? = fu(v(t),\)®, ®(0)=1. (3.2)

Remark On the period T. v(t) = ry.u obviously has period 27 /w. But it may has
smaller period. For instance let Z,, be the subgroup of O(2) generated by rarjpm. If
u € Fix(Z,,) for some m € Z* then T = 2x/(mw). This is the case when e.g. (u,w,))
is on a TW path bifurcating from a trivial stcady-state solution (u = 0) path, or from a
nontrivial steady-state solution path belonging to Fix(D,,;)( D, is the subgroup generated
by Z,, and s); See e.g. (8] and [1] respectively.

Lemma 3.1 Let T be the period of TW v(t) := ryu. Then the corresponding Floquet
operator

M = rypeT/ = Ther g, (3.3)
where f, = fu(u,A) — wA.
Proof Set ® := r_,,;®. Then by (3.2)
o ..
'Et‘ = fu(I), (I)(O) =1 (34)

But f, is independent of time t, so we may solve (3.4) to obtain

P(t) = €'/~ (3.5)
Thus ) i
M =®(T) =ryr®(T) = rorel’®. (3.6)
Finally we note
roru = v(T) = v(0) = u. (3.7)

So ru7 1s comutable with fu and hence with ¢T/«. This shows the last cquality of (3.3)
and completes the proof.
In the sequel we denote by o(B) the totality of eigenvalues of a linear operator B.
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Lemma 3.2 Assume that (2.14) and (2.15) hold, q s the dimension of U and

o(fu) = {e1, a2, -, g} (3.8)

Then,
(i) there is always one eigenvalue, say, a; = 0 with the null vector Au;
(i) a; #0 for j > 1 and

O'(FI) = {\/Co, —V Co,az,"' ,aq}, (39)
where Fy := Fz(z,)),z = (u,w) and

Co = lgAu. (3.10)

Proof For (i) see (2.5). To show (ii) we first note that (2.14) and (2.15) imply o; # 0
for j > 1. Next we prove (3.9} in a constructive manner. Let a be a non-zero cigenvalue
of f, with an eigenvector ¢. If a®? # Cy then we sct

0 := (0,,0;) € X, (3.11)
0, = ¢+ a10,Au, (3.12a)
02 = Io(ﬁ/(& - Q_ICO). (312b)
This makes
F.0 = af. (3.13)

For the case a’? = Cj the definition (3.12b) fails. Instead we define
0 :=a_1Au, 0;:=1 (3.14)

to validate (3.13). Therefore we have proved

{az, 00} C o(Fz). (3.15)
As in (3.14) set
01 = Au, 02 = :t\/ CQ, (316)
then
on = :’t\/ Cog (317)

(3.15) and (3.17) imply

{:t\/CTo,a-;,---,al} C o(Fz). (3.18)

For the other direction of the proof we start with any a € o(F,) and its cigenvector
02(01702)?&0: .
fuly + Auly = by, (3.19a)

1001 - 002. (319b)
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Let us first consider the case fuBI = 0. In this case §; # 0, since if §; = O then 8, # 0 too
by (3.19a). Hence 8; = C Au for some nonzero constant C. Then (3.19) gives az = Cp or

a € {+VCo}. (3.20)

For the other case ¢ := f,0; # 0 we have fu¢ = a¢ by (3.19a). Also observe that a # 0
by (3.19),(2.14) and (2.15). Then we end up with

a € {az, --,0q}. (3.21)

(3.20) and (3.21) lead to
o(F;) ¢ {£VCo, a2, ,0q}. (3.22)

(3.9) finally follows from (3.18) and (3.22).

Now we are ready to consider the stability of TW u(t) := r,,u. Taking the existence
of the solution orbit into account we adopt the definition of orbital asymptotic stability as
in [2] and [5]. According to this definiton v(t) is stable if any solution %(t) of (1.1) which
is close to v(t) at t = O will approach the solution orbit {rov(t),a € R} ast — oo.v(t) is
unstable if it is not stable. It is well-knowm (see (2] or [6]) that the stability of v(t) may
be determined by the eigenvalues of the corresponding Floquet operator M and hence, in
virtue of Lemma 3.1 and 3.2, by a(fu) or o(F;). More precisely, we have the following
main theorem.

Theorem 3.3 Assumptions and notations as in Lemmas 8.1 and 3.2. Then,

(i) MAu = Au.

(it) M:U, - Uy := Range(fu).

(iti) TW v(t) is stable if one of the following three equivalent statements holds:
(a) all eigenvalues of the restriction My := M|Uy have modulus less than 1;
(b) eigenvalues ay,---,aq of fu have negative real parts;

(c) all eigenvalues ezcept +1/Co of F, have negative real parts.

(iv) v(t) is untable if the following equivalent statements hold:

(a) an eigenvalue of M has modulus greater than 1;
(b) an eigenvalue of fu has positive real part;
(c) an eigenvalue of F; other than +1/Cy has positive real part.

Proof (i) is a direct consequence of (3.3) and (2.14). To show (ii) let y € U; then there
exists a 7 € U such that

y= fuT-
But M is commutable with f, since both r,7 and eT v are (cf. (3.3)). So
My = fuM‘r.

(ii) then follows.
By (i) and (ii) we have
o(M) ={1,0(M)}. (3.23)
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Then a simple application of Theorem 6.2, Ch. XVI [2] shows that (iii,a) leads to the
stability of v(t).

The equivalence of (iii,b) and (iii,c) has been established in Lemma 3.2. Next we try
to confirm the equivalence of (iii,a) and (iii,b). We observe that M, eT/* and r,r are all
commutable with each other and they map U, into itself. So we may define the restriction
operator

E = MUy, (3.24)

and this gives
M, = rurE. (3.25)
Now let || - || denote the induced matrix norm from the inner product (-,-) within the

subspace U;. Then by (1.3a) and (1.3¢)
Ir5ll = lIrnall = 1,Ya € R,n € Z. (3.26)
It follows from (3.25) and (3.26) that
IMTl = llror B < llrawr B = 1B = [Ir-nwr Mi]| < [[M7].

So
| M7 = || ETl- (3.27)

The desired equivalence then follows immediately:
(i, o)  [|M"]| 0 ¢ [|B"]] = 0 ¢ (i, b), (3.28)
This completes the proof to (iii). The proof to (iv) is similar and ommitted.

Remark 3.2 Recall that we may use the extended system F(z,)) = O to follow a path
of TW. Theorem 3.3 enables us to monitor the change of stability of TW by detecting an
imaginary axis crossing of an eigenvalue of F; just as we shall do for "ordinary” steady-
state bifurcations (cf. [7]).
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