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Variational Inequalities for Set-Valued Maps

Zhu Yuanguo
(Dept. of Math., Gannan Teacher’s College, Ganzhou, Jiangxi, China)

Abstract This paper deals with the existence of solution to variational inequalities
for set-valued maps by Ky Fan theorems and technique of KKM in a (locally convex)
Hausdorff topological vector space and a reflexive Banach space. The problems discussed
here are more general than that in [6, 7, 10, 11].

Key words variational inequality, KKM.

1. Introduction

Let E be a Hausdorff topological vector space (t.v.s.) or locally convex Hausdorff
‘topological vector space (l.c.s.) with dual E', and X C E a nonempty closed convex set.
We denote the pairing between E' and E by (w,u) for w € E',u € E.

I. Let X C E be nonempty compact and a : E x E — R be a continuous bilinear form,
i.e., there exists a constant 8 > 0 such that

a(u,v) < B|lul|ljv|]| forall u,veE.

Let the form b : E x E — R satisfy the following conditions:

(i) b(u,v) is continuous in u; or (i') b(u,v) is continuous linear in u;

(i) b(u,v) is convex lower semicontinuous in v.

Suppose that T : E — 2E' is a set-valued map. We shall deal with the following:
Problem 1 Find i € X, w € T4 such that

a(2,v — @) + b(4,v) — b(g,u) > (w,v—u) forall velX. (1)
Problem 2 Find @ € X such that

a(@,v— @)+ b(a,v) — b(u,u) > sup (w,v—1u) for ve X (2)
weTa

II. When E is a reflexive Banach space and X C E is a closed convex set, let a(u,v)
be coercive, i.e., there exists a constant o > 0 such that

a(u,u) > af|ul|? forall ue€E.
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In addition, we assume that
(iti) b(u,v) is bounded, i.e., there exists a constant v > 0 such that

|b(u, v)| < Allu||||v]] for all u,ve€ E.

III. In theorems 3, 4, 5, we replace the continuity and bilinearity of a(u,v) by the
following:

(iv) a(v,v—u) > a(u,v —u), forall u,v€ E.

(v) a(u,v) is hemicontinuous in u, i.e., for every u,v,p € E, the function

te 0,1} — a(tu+ (1 — t)v,p)

1s continuous.

(vi) a(u,v) is convex and upper semicontinuous in v and a(u,8) > 0 for all u € E (0
is the zero element of E).

or

(vi') a(u,v) is linear upper semicontinuous in v.

It is obvious that condition (vi') is a special case of (vi) and that if a(u, v) is continuous
bilinear and a(u,u) > 0, then (iv), (v), (vi), (vi') hold.

2. Definitions and Lemma

Definition 1 A set-valued map T : X — 2F' is said to be hemi-lower-semicontinuous
(hemi-l.s.c.) if for every fized u,v € X the set-valued map

te 0,1 - T(tu+ (1 - t)v) € 2F

is lower semicontinuous from [0,1] to 2E" with respect to the weak™ topology of E'.

Definition 1 could be phrased as follows: Given any sequence t, converging to {p on
[0,1], denote z; = tu+ (1 —t)v, and let wo € Tz,. Then there exists a sequence w, € Tz,
which is weak™ convergent to wyg.

Definition 2 A set-valued map T : X — 2E" is called
(1°) Antimonotone, if for u,v € X,p € Tu,q € Tv, we have

(P—qu-v) <0
(2°) Lipschitz map (when E is a Banach space), if there ezxists a constant  such that
H(Tu,Tv) < €ljlu—v|| for u,ve X,
where H 1s a Hausdorff metric,

H(Tu,Tv) = sup |d(p,Tu) — d(p, Tv)| = max{ sup d(p, Tv), sup d(p,Tu)}.
pEE! pETu p€Tv

Lemma 1 Let E be a Banach space and X C E be a closed convez set. Suppose that
T:X—>2E isa Lipschitz map and Tu is weakly compact in E' for each u € X. Then T
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1s hemi-l.s.c..

Proof For every fixed u,v € X, let z; = tu+ (1 - t)v,t € [0,1]. Let t, — t; on [0,1] and
wo € T'z,,. Then

d(wo, T2,) < H(T21,,Ta1,) < Ellaty — 21, | = Elty — tolllu — vl
Since Tz, is weakly compact, there exists w, € Tz, such that
lwo — wall = d(uwio, Tz < €lt, — tolllu = o]l

Hence, w, — wp (strongly). Consequently, w, — wo (weak"ly). This is our required
result.

3. Main results

We first use the Ky Fan fixed point theorem [3] to solve the Problem 1.

Lemma 2 Let E be an l.c.s. and X C E be a compact set. Suppose that T : X — 2F'

1s upper semicontinuous and for each u € X,Tu 1is nonempty compact convez. If function
p: X X E'x X > R satisfies

(1) for each fized v € X, p(u,w,v) is continuous in (u,w).

(2) for each fized (u,w) € X x E',p(u,w,v) is lower semicontinuous and quasiconvez
in v.

Then there exist u € X,we Tu such that
e(a,w,v) > p(2,w,q) forall ve X.

Proof We know that E' is an l.c.s. So E x E' is an l.c.s. Let a set-valued map A :
X x E' = X may be defined as follows:

Au,w) ={ve X : p(u,w,v) = r’rél)r(l o(u,w,s)}.

Since @ is quasiconvex in v, A(u,w) is convex. We shall verify that A is upper semicon-
tinuous. In fact, let (u,,w,) — (u,w) on X x E' and v, € A(u,,w,),v, — v, then

o(up, wy,v,) = glél)l(l o(uy, wy,s) < p(uy,wy,s) forall s € X.
By (1) and (2), we have
o(u,w,v) < li,r‘n Uy, wu,vy) < limp(uy, wy,s) = p(u,w,s) for s € X.
u

By the compactness of X,v € X and ¢(u, w,v) = minsex ¢(u,w,s). We have v € A(u, w).
By [1, Corollary III. 1.9], A is upper semicontinuous. Since for u € X, Tu is nonempty
compact, T(X) is a compact set. Hence H = Conv(T(X)), the closed convex hull of
T(X), is a compact set. A set-valued map S : X x H — 2X*H is defined as follows:
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S(u,w) = (A(u,w),Tu). It is easy to show that S is upper semicontinuous and S(u,w)
is nonempty compact convex. By Ky Fan theorem (2], there exists (#,w) € X x H such
that (i,w) € S(4,w). Consequently, & € X, w € T such that

e(a,w,v) > p(u,w,u) foral velX.
This completes the proof of Lemma 2.
Theorem 1 Let E be an l.c.s. and X C E be a nonempty compact convez set. Let a(u,v)
be a continuous bilinear form and b(u,v) satisfy (i), (). Suppose that T : X — 2F" is

upper semiconltinuous and for each u € X,Tu is a nonempty compact convezx set. Then
there exists a solution to Problem 1.

Proof Let p(u,w,v) = a(u,v — u) + b(u,v) — (w,v — u). It is easy to verify that ¢
satisfies requirements of Lemma 2. Hence there exist & € X, w € Tu such that o(u,w,v) >
p(a,w, u) for v € X. Consequently (4, w) satisfies (1). This is the required result.

The following theorem is a noncompact form of Theorem 1. We note that the weak
topology and weak” topology is consistent in a reflexive Banach space.

Theorem 2 Let E be a reflexive Banach space and X C E be a nonempty closed convez
set. Let a(u,v) be a coercive continuous bilinear form and b(u,v) satisfy (i), (i), (i)
Suppose that T : X — 2E' {s upper semicontinuous from the weak topology o(E, E') of E
to the weak topology o(E',E) of E' and for each u € X,Tu is nonempty bounded closed
conver. If T 13 also a Lipschitz map and v + € < o, then Problem 1 has a solution.

Proof We choose an arbitrarily fixed point vg € X. For u € X, w € Tu, by the bilinearity,
continuity, coercivity of a(u,v) and (iii), we have

a(u,vg — u) + b(u, vo) — b(u,u) — (w,vg — u)
= a(u,vo) — a(u,u) + b(u, vo) — b(u,u) — (w,vy - u)
< Bllulllivoll ~ ellulf® + ljullllvoll + Yllwll® + llwli(llvoll + [luf])- (3)
Now since T is Lipschitz map, we have

d(w,Tvo) < H(Tu,Tvo) < €llu — vol| < &(Ilull + [lvol])-

Since Tvg is bounded closed convex, T'vg is weakly compact and there exists p € Tvp
such that |jw — p|| = d(w,Tvy). Hence we have

llwll < d(w, Tvo) + [lpll < £(llull + llvoll) + max lpll
Thus, from inequality (3) we obtain

a{u,vo — u) + b(u, vo) — b(u,u) — (w, vy — u)
< —(a= (v+ Oul® + (8 + v+ 28)llulllivoll + ([l + llvoll) max llpll + &llvoll*.

It is clear that for ||u|| large enough, one has

a(u,vo — u) + b(u,vo) — b(u,u) — (w,vo — u) <O. (4)
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Choose k > 0 large enough so that ||vg|] < k, ||u]| > k and inequality (4) holds. Let
B = {u € X : ||lu|| < k}. Since E is a reflexive Banach space, B is a weakly compact
convex subset of X. Note that a convex lower semicontinuous function is a weakly lower
semicontinuous function and a linear continuous function is a weakly continuous function
[13]. So a(u,v) is a weakly continuous bilinear form and b(u, v) is weakly continuous in u,
weakly lower semicontivous in v. Hence all requirements of Theorem 1 are satisfied in the
weak topology on B. Thus, there exist 4 € B,w € T, such that

a(tt,v — @) + b(a,v) - b(w,a) > (w,v— @) forallve B. (5)
Firstly, if ||%|| = k then since vp € B, we have by (4), (5)
a(@,vo — @) + b(d,vo) — b(%, ) — (w,vo — @) = 0. ()

Now for v € X, choose 0 < t < 1 small enough so that v; = tv + (1 — t)vg € B. Use the
convexity of b, linearity of a and (5), (6), we obtain

0

IN A

I
o
>
[~d|
<
|
]
o
_+_
o
—
]
=
t
_—
|
[
p—
|
1
<
|
1

Therefore,
a(u,v — @) + b(a,v) — b(u, ) > (w,v — ).

Secondly, if ||| < k, then for v € X, choose 0 < t < 1 small enough so that v; =
tv + (1 — t)i € B. By the demonstration in first step, we can show that (i, w) satisfies
(1).

This completes the proof of the theorem.

Next, we shall use the technique of KKM and Ky Fan theorem [3| to solve Problem 2.

Theorem 3 Let E be a t.v.s. and X C E be a nonempty compact conver set. Suppose
that a(u,v) satisfies (iv), (v), (vi) and b(u,v) satisfies (i), (ii). If T : X — 2F is
antimonotone, hemi-l.s.c. and for u € X, Tu 1s nonempty, then there exists 4 € X such
that (2) holds.

Proof Define a set-valued map G : X — 2% as follows:
G(v) ={ue X :a(u,v—u)+b(u,v) — b(u,u) > léle (w,v—u)} for ve X.
We shall verify that G is KKM. Let {vy,vq,-+-,v,} C X, ug €Conv{v,va, -+, vn},l.e.,
there exist t; € [0,1] (+ =1,2,...,n) such that Zt,- =1, u = Zt;v,-. If up & U G(vi)

then

a(uo, v; — ug) + b(ug, vi) — b(ug, ug) < wier%,f (w,v; —ug), 1=1,2,...,n.

ug
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By the convexity-of a and b, we get
a(ug, up — uo) + b(uo, ug) — b(ug, ug) < wier%‘fu"(w,uo — up)

which contradict the fact of a(ug,#) > 0. This cotradiction shows that G is KKM.
Moreover we difine a set-valued map I' : X — 2% as follows

I['(v) = {u€ X :a(v,v — u) + b(u,v) — b(u,u) > sup (w,v —u)} for v € X.

weTv

Since T is antimonotone, we have

wiél£u<w’ v-—u) > u?élTu(w,v - u). (M

By (iv) and (7), we obtain that for v € X,G(v) c I'(v). Hence I' is KKM. It is easy
to verify that for v € X,I'(v) is a closed set. As a result of Ky Fan theorem (3], we get

() T(v) # 0.

veX
Let u € m ['(v) that is
veEX
a(v,v — @) + b(u,v) — b(a,8) > sup (w,v—a) for all v € X. (8)

weTv

For each fixed ve X, let zz =tv+ (1 — t)a € X, t € [0,1]. From (8), we have

)
a(z, ze — @) + b(4, z) — b(u,u) > sup (w,z, — ) te0,1].

wGth
By the convexity,
ta(z,v — @) + t(b(u,v) — b(u,u)) >t sup (w,v—1u) te[0,1].
weTlz,

a(z;,v — @) + b(@,v) — b(a,4) > sup (w,v—u) te(0,1]. (9)

weT;,
Let w € Tu be arbitrarily fixed. For arbitrary € > 0, let
U ={weE:|(w-wv-a) <e}.

Then U, is a weak™ open neighbourhood of w and U, N T4 # 0. Since T is hemi-l.s.c. and
20 = 4, there exists § € (0,1) such that ast € (0,8), U.NTz # 0. Let w € U.NTz. Then
w € Tz and |(w — w,v — @) < €. Therefore, (w,v — @) > (w,v — @) — €. Consequently,

sup {(w,v —4) > (w,v — @) — €.
weT z

By the arbitrarity of € and w € T, we have

sup (w,v—a) > sup (w,v—a).
weET 2, weTd
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From (9), we obtain

a(z, v — 1) + b(@,v) — b(z,4) > sup (w,v - &) te(0,1] (10)
weTa

By the hemicontinuity (v) of a, let ¢ — 0.in (10). Then

a(@,v — @) + b(a,v) — b(4,a) > sup (w,v— a)
weTa
which is the required result.
According to Lemma 1, Theorem 3 and the proof of Theorem 2, we can obtain the
following two theorems.

Theorem 4 Let E be a reflexive Banach space and X C E be a nonempty bounded closed
convez set. Let a(u,v) satisfy (iv), (v} (vi) and b(u,v) satisfy (), (ii). Suppose that
T : X — 2F' is a antimonotone and Lipschitz map and for each u € X, Tu ts a nonempty
bounded closed convex set. Then there exists a solution of Problem 2.

Theorem 5 Let E be a reflexive Banach space and X C E be a nonempty closed convez
set. Let a(u,v) be coercive and satisfy (iv), (v) (vi) and b(u,v) satisfy (7), (%), (%)
Suppose that T : X — 2E' is an antimonotone and Lipschitz map and for each u € X,Tu

s a nonemply bounded conver closed set. If v + £ < a, then there exists a solution to
Problem 2.

Corollary Let E, X be the same as in Theorem 5. Let A: X — E' be a hemicontinuous
and monotone operator and 7 : X — R be convex lower semicontinuous. There exists
vp € X such that A, j satisfy the following coercive condition:

(Au,u - vo) + j(u)
[|ul
Suppose that T : X — 2E" is an antimonotone and Lipachitz map and for each u € X, Tu

is a nonempty bounded closed convex set. If T(X) is bounded, then there exists a solution
to Problem 2 with a(u,v) = (Au,v) and b(u,v) = j(v).

— +oo as |lu]| » +oo. (11)

Proof Let a(u,v — u) = (Au,v — u), b(u,v) = j(v). Since T(X) is bounded, there exists
a constant ¢ > O such that

lw| <¢ forall ue X, we Tu.
Thén forue X,weTu,
(Au,vo — u) + j(vo) — J(u) — (w,v0 - u)
< =((Au,u = vo) + 3(u)) + 5(vo) + [[wlll|vo — ull
< = ((Au,u = vo) + j(u)) + ¢lull + 5(vo) + ¢llvoll-
From the coercivity (11), we can see that
(Au,vo — u) + j(vo) — j(u) — (w,vo — u) <0 as ||u]| is large enough.

According to the proof of Theorem 2 and Theorem 3, the conclusion of Corollary is true.
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