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On the Dimension of the Bivariate Splines Spaces S] (A*) *

Gao Junbin
(Dept. of Math., Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract We establish the dimensional formula of the space of C” bivariate piecewise
polynomials defined on a triangulation A* which comes from an original triangulation
A of a connected polygonal domain with HCT subdivision for each triangle of A. Our
approach is made by constructing a minimal determining set and an associated explicit
basis for the space S3,(A*). The minimal determining set is defined well.

Key words multivariate spline, HCT triangulation, B-net, super-spline.

1. Introduction

Let @ ¢ R? be a connected polygonal domain, which does not allowed to contain any
hole. Let A denote a triangulation of (2 and suppose that the triangles of A are labeled
by T ... TNl For each triangle TVl = v[:]v[;]v:[:] (in counterclockwise order) we take
one point Uc[)i] in Tl] and connect vertex vg] with vertices v,[:} (k = 1,2,3). It clearly
results in a new triangulation A* of (1 called HCT triangulation of A. In A*, we refer
v([;] to a new vertex and v([;]v,[:] (k =1,2,3) to new edges of A* for s = 1,---, N. Denote
TE] = vg]vE]vELl k =1,2,3), where k + 1Imod3. Given 0 < r < d, the space of bivariate
splines over this triangulation A* is defined by

SHA") ={s€CT(Q): sl € Py, i =1,--,N, k=1,2,3}, (1.1)
k

where IP; is the (d+ 1)(d+ 2)/2-dimensional linear space of polynomials of total degree d.

On the dimension of S7(A*), a lower bound was given by Schumaker (cf. [11]) in terms
of the number of interior and boundary vertices of A*. When d > 3r + 2, C.K. Chui and
M.J. Lai (cf. [7]) have proven that such lower bound is exactly the dimension of the space
S7(A*). Since A* is always the triangulation without vertices of degree 4 or 5, we can
conclude that the dimension of S . ,(A") is equal to the lower bound from the work in
my Ph.D Thesis. In this paper we prove the similar results about dimensions of S§,.(A*)
except r = 2. We shall establish an upper bound which agrees with the lower bound and
in the process obtain an explicit basis for Sj,(A*). Our approach will use Bézier nets to

*Received May 29, 1992. Partially supported by the Science Foundation of China, the Postdoctoral
Scinece Foundation of China and the Science Foundation for Youths provided by HUST.
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construct a certain minimal determining set of domain points. Now we introduce some
further notation and present some general results which will be useful for determining the
dimension of S}, (A*). Given a triangulation A, let A* be a HCT triangulation of A, and
denote

= number of interior vertices of A (A")

= number of boundary vertices of A (A*)

EEE

number of interior edges of A (A™)

&
v?:vvv
[

= number of boundary edges of A (A™)

RSN

E

number of triangles of A (A¥)
Er+Ep, E"=E;+ Ep etc.

&
Il

It 1s well-known that
EB:E*B:VBZVL;, E;=3Vi+Vp -3
Ey=3Vy+Vg -3, N=2Vi+Vp—-2, N =2V/+Vg-2 (1.2)
Ej=E;r+3N, V/=V;+N, N =3N

We assume that the vertices v;, 1 = 1,--+,V* of A" are numbered in such a way that
the first V; of them are original interior vertices, i.e. the interior vertices of A, the N of
them are interior vertices of A* denoted by vy, = v([;l, v([;] eTll {=1,... N, and the
remaining Vg (= Vp) are boundary vertices. For each vertex v; of A*, let E; denote the
number of edges emanating from v;, and e; the number of distinct slopes assumed by these
edges. Thus E; = ¢; = 3 where 1 = Vi + 1,V + 2,--. V. Then we have the following
conclusion.

Lemma 1.1 Let A* be a HCT triangulation of a given A. Then the lower bound for the
dimension of S].(A”) is given by

. r . 3r+2 2r+ 1 . 3r+ 2 r+2
s> (*37)+ () (757)-(7)

+Za,+NZ +1-25)4 = Ib7, (1.3)

vy

where
.

g; = Z(r+j+1—je,-)+. (14)
J=1
2. Preliminaries and tools

Following (3], in order to establish that formula (1.3) provides the actual dimension of
S3.(A*), we shall use Bézier net techniques. Associated with any triangulation A, let

N W
B=Bd::U{P}jlk '”’“‘2”"3, i+j+k:d}, 2.1)
=1
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where vllll , vgl

(1

and vy' are the vertices of the I-th triangle in counterclockwise order (for

HCT triangulation A* of A, we always take a certain new vertex as v[l'l in any triangle
of A*). The set B is called the set of Bézier ordinates or domain points. Say that the

point P,[;lk ’s of distance d — ¢ from the vertex vllll (with similar definitions for the other

two vertices). We also say that the point Pi[;]k is of distance 1 from the edge opposite to

v[1']. The ring of order p around the vertex v is defined as

Ry(v) = {Points which are distance p from v},

and the disk of order p around v is
P
Dy(v) = U R;(v).
=0

As all are well-known, each spline s € Sj(A) can be written in the form
s(z,y) = si(z,y) for (z,y) e TV, 1=1,--- N,

where each s;(z,y) is a polynomial of degree d which can be written in Bernstein-Bézier
form as follows

d! P i
S[(a,ﬁ,"/) = Z C[ll _—'_a'ﬂj’7k)

ik 51 2 k)
i+j+k=d i1yl k!

where (a, 8,7) are the barycentric coordinates of a point (z,y) in the triangle Tl
Associated with each domain point P € B, we define a linear functional on Sj(A) by

Ap s = the coefficient of s associated with the domain point P.

The set {(P,Ap s)}pes is called the Bézier net. If 4 is a set cf domain points, then we
write

Suppose that I' C B contains m points, and that Ar has the property that it is a deter-
mining set for SJ(A) in the sense that

s € S3(A) and As =0 for all A € Ar implies s = uiv0.
Then we have

Lemma 2.1 dim S5, (A) < m.
The following Lemmas can be found in papers [3] and [7].

Lemma 2.2 Let v be a boundary vertex of A with E edges attached. Suppose that the
triangles with vertices at v are numbered countereclockwise as T[ll, ces ,T[E‘I]. Finally, let
D denote the following set of domain points:

1. All domain points in TN N Dy(v),
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2. For eachl =2,--- E — 1, the domain points in the p — r rows of TV far away from
7=,

Then D is a minimal determining set for Sy(A) on Dp(v) with
#D = (P;Z ) +(”‘;“ )(E—z).

Lemma 2.3 Let v be an interior vertez of A with E edges attached, where e of them have
different slopes. Then there exists a subset D of Dy(v) with

r+2 p—r+1 = . .
#D = ( 9 )+( 0 )E+j_z:l(r+]+l—]e)+
such that D determines Sj(A) on Dy(v).
The required points in Lemma 2.3 can be given ex-
plicitly (cf. [12]). Let T} = vjvavs and T2 = vjvavy be
shown in Fig.1. Define B-forms

n! .o v
— . vk
Pn = - Z a{ka/\’lAzAs v
i+ji+k=n 4
and
- b nt ook
= 2 LTI L Lt
1+7+k=n vs
on T and T, respectively, where (A;, Az,A3) is the "
barycentric coordinate of (z,y) with respect to Ty and Fie. 1
ig.

(k1, 2, u3) is that with respect to Ts.

Lemma 2.4 Suppose that vy, vz and vy are not collinear. For !l < (n — 2)/2, given
Bézier coordinates {a;jk, bijr : 7> 1} and {a;4 : 7 =0, 0 < k < n— 2l -2} which
satisfy the smoothness conditions of order up to n — 21 — 2 on vyvs, if {aijx : J > 1}
and {b;; : 7 > 1} satisfy the smoothness conditions of order up to n — 1 on vyvs, then
for any given {aijk, bijx : § = 0,0 < i < I} there ezxists a unique set of coefficients
{aijk, biji : 7 =0,1+1 <1< 2[+1} such that {a;jx} and {b;;} meet the C"™ smoothness
conditions on vivs.

The proof of Lemma 2.4 is refereed to [7].

If we show that the dimension of S§,.(A*) is bounded above by the equality in (1.3),
then with Lemma 1.1 the dimension of S§,(A*) will be obtained. The cases where r is odd
and even are treated separately in the following two sections.

3. The case for odd r

In this section we always assume that r is odd, say

r=2m+1
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By the observations and Lemma 2.1 in Section 2 above, it suffices to construct a deter-
mining set for S5 (A*) with the number of elements given in (1.3). First we discuss the
case that A consists of only one triangle 7' with three vertices v;, v and v3 (in counter-
clockwise order). Taking one vertex v in T (in general, vg is the centroid point of T, i.e.
v = zl,’-(vl + vz + v3)) and connecting vg with v; ( = 1,2, 3) result in a triangulation Ag of
T. Let T} = vovv;4+1, wherel = 1,23 (I + 1lmod3), and denote by P['](z,y)—the B-form
of degree n over T; such that

Plz,y)= ¥ af.}km,\l,\;x’;, (3.1)
itjtk=n g R

where A = (A1, Az, A3) is the baycentric coordinates of (z,y) with respect to T} and ayjlk

associates with the domain point P.[;]k The following will be devoted to discussing the
structure of S§.(Ao).

Lemma 3.1 Letr =2m+ 1, then
dimSL, (Ag) = ( 2"‘2+3 ) +3 ( 4"‘2+ 3 ) +2 ( '";1 ) (3.2)
This lemma is the deduction of Lemma 2.3. Here we will construct a useful minimal

determining set for SJ (Ao).

Theorem 3.2 Suppose that r = 2m + 1. Py denotes the following set of domain points (
with respect to S (Ao)):

1. For each triangle T} (I = 1,2,3), all of the following points of

{P};Jk: izo,kzo,jzamu}U{P,.[]‘J,‘: k23m+2,j22m+2}

U{PL:i<em+1,<3m+1,k<3m+1},
where 1 + 5+ k = 3r.

2. For each triangle T} (I = 1,2,3) all the domain points of

(Pl izom+2,5omet,k2m+1},

where t + 7+ k = 3r.
Then Py is a minimal determining set for S5 (Ao) on Ao.

Proof It is not difficult by counting that # P = dimS§,(A¢). Then it suffices to prove

that s = uivO while Aps = 0, for any P € P;. First for each vertex v; ({ = 1,2,3), it

follows from the construction of Py and the smoothness conditions of s on vou; (cf. [8])

that Ap s = 0, so long as P in D3p41(v). On the other hand, by (1) '\P.“.]k s = 0, provided
9

that 1 < 2m + 1 for | = 1,2,3. The conditions (2) imply that Ap s with P belonging
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to {P'[Jl]k : 7 <mork <m} (Il =1,2,3) are undetermined. Moreover, for each vertex
v (I =1,2,3), step by step using Lemma 2.4 for the domain points in the (3m + 2)th row
to the (5m+ 2)th row far away from v;, we can prove that Ap s = 0 except for P belonging

to {P'[;],c : 7 <mand k < m}. Finally, it follows that Ap s = O for any domain point P

of Ag utilizing Lemma 2.4 with regard to v; and the smoothness conditions of order up to
r on vgovz and vgus.
This completes the proof.

Theorem 3.3 For SI (A*) (r = 2m + 1), let P consist of the following sets of domain
points:

1. For each interior vertex v; (1 = 1,2,---,V}), use Lemma 2.8 to choose a minimal
determining set on the disk Dsp1(vi) for S (A%).

2. For each boundary vertez v; (1 = V;' + 1,V +2,---,V; + Vg), use Lemma 2.2 to
choose a determining set on Dgpmyq(v;).

3. For each edge 1 = vivy of A, in one of two triangles with n as an edge choose the
all domain points which are distance less than 2m + 2 from n but out of D3m+1(v1)

and D3m+1(02).

4. For each new vertex vgl of A* (I = 1,2,---,N), let u([)l] be in the triangle Tl =
vgl]vlzl}v:[:] in counterclockwise order. Choose all of domain points of D4m+1(v([)']) N
Dsmt2(0l) N Dsmaa(vlh,) (k= 1,2,3).

Then P is a determining set for S5 (A*) and

dimS.(A%) = ( 6m2+5 ) _ (( 6m2+5 ) _ ( 2m2+3 )) Vi + N)

+(4m2+3)(E,+3N)+2N<m+1)+cr,

V
where o = Z': o; and o; is defined as (1.4).
i=1

Proof We first check the cardinality of P. The cardinality of sets in (1), (2), (3) and (4)
are, respectively,
Vi
2m + 3 m+1
=1
3m+3 m+ 1
1
( 2m+2) nd 3N< 2m + 1 )
T 2 2
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Thus we see that the cardinality of P is given by

4p = ((3"‘;3)—2(”‘;1))VB+(2E+3N)("‘;1)

( 2m2+3 )V1+3N( 2m2+1 ) N ( 2m2+2 ) E+.Zl”‘
i=
Using (2.1), it is easy to see that this formula reduces to the expression in (1.3).

It remains to check that P is a determining set for S, (A*). For each vertex v; (1 =
L., Vi,V; +1,-- -, VJ' + V5), it is clear that Aps = O for any P € D3pny1(vs) on A,
because of the points of P chosen in items (1) and (2). For each triangle of A, some one
edge n = vjvs (v, v2 € A) of that triangle must be the edge of A. On this triangle the set
A of all domain points which are of distance less than 2m + 2 from 5 but out of Dam+1(v1)
or D3py1(v2), is contained in P or not. Thus we can see that Aps = 0 for P € A with
(3) or the smoothness conditions of order up to r on 5. Finally, by Theorem 3.2, we may
prove that Ap s = O for any domain point P in each triangle of A. Thus s = utv0, because
all of the Bézier coordinate of s are zero and the theorem is established.

The following theorem follows immediately from Theorem 3.3.

Theorem 3.4 There exists a local ezplicit basis of S§,.(A*), say A(P) = { By € S§,.(A*) :
AgBp = Agp, for any P,Q € P}. And when P is in the set of items (1) and (2) of
Theorem 8.8, suppBp consists of all of the triangles of A with vertices at v;. For P in the
set of item (8) of Theorem 3.8, suppBp consists of two triangles of A with n as an edge,
and for P in the set of item (4) suppBp 1is only one triangle of A which contains P.

4. The case for even r

In this section we will establish the similar conclusions as the preceding section in the
case where r is even, say

r=2m (m>1)
Let Ag, etc. be defined as the preceding section. Then from Lemma 2.2, it follows that

Lemma 4.1 Suppose that r = 2m, then

dimS], (Ao) = ( tm v ) +3( am ) +m?, (4.1)

Now we give a useful minimal determining set for S§,.(Ag).

Theorem 4.2 Let Py denote the following set of domain points:
1. For each triangle T; (I = 1,2,3), choose all of the domain points of

{PIIJ']k jZ3m—+—1}U{P',]‘,]k; j23m+1,k23m+1}
U{Plk:i<2m, j<3m, k<sm}

except for j 2

(2m,3m,m)’

where 1 + 7+ k = 3r.
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2. For each triangle T} (I = 1,2,3), choose all of the points of
{Pl:izem+1,i>m+1k>m+1])
U{P:[;]k m+1§j§3m—1,i+j=6m},
where 1 + 5 + k = 3r.

3. For only one triangle, say Ty, choose P([sllnmo)'

Then Py is a determining set for S (Ag) on Ao.

Proof It is not difficult by counting that # Py = dimS§,(Ao). Then it suffices to prove that
s = utv0 while Ap = 0, for any P € P,. First for each vertex v, SI =1,2,3), on Rgm(v1),
the Bézier ordinates associated with the domain points in {Pulk : 3 =383m,0< k<

m} | U{ P‘[;]k :1<3<m-1,k=23m} are undetermined. The number of those ordinates
is 2m. Using C?™ smoothness conditions on R, (v;) results in that all of ordinates are
zero. Second, along R;(v;) (3m + 1 < 5 < 5m), according to (2™ smoothness conditions
(cf. Lemma 2.4), we can conclude that all Bézier ordinates except for that associated with
the doamin points in {P,[Jl],c : 0<j7<m,0< k< m},on each triangle

T;, are zero. Finally by, us-
ing C?™ smoothness conditions on
Rsm+1(v1) and then on vou; (I =
1,2,3) we will show that give all
Bézier ordinates are zero. This com-
pletes the proof.

Given a triangulation Aj,, in
which there is only one interior ver-
tex v, be shown in Fig.2. Let
6; =angle v;vv;;, (¢ € ZZ,,) in coun-
terclockwise order. If n > 4, then
there exists 19 € ZZ, such that
i, +8i,+1 < m. Without loss of the
generality, suppose that ig = 1.

Let v2 = ajv + frvs + 1w,
vz = agv + Bouy + 2wy, and wy = 7,
oo + Bow; +ove, then we have the i
" Fig. 2
conditions
Yov1v2 + 11Bo—722>0 (4.2)
and
7% >0 (4.3)

Let n > 4 and the above conditions are satisfied. We define the following domain point
set D on D3p(Aagp):
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1. The minimal determining set on D3py_1(A2,) for S27_, (A2n);

2. On boundary edges of As,, in counterclockwise order, take 2m + 1 points from v,
2m — 1 points from vy, m points from v; and w; where 1 > 3, respectively.

Lemma 4.3 The D is a minimal determining set for SZ™(A,,) on Agy,.

Proof On A,, the remaining undetermined Bézier ordinates are Aj,--:,Ap;m, Amst1,
By, -+,By,Bpi1,C1,++,Cpm and Dy,---, Dy, by construction of D and smoothness con-
ditions. We will see that smoothness conditions on vvz, vws and vw; result in the following
system:

Am+l = ﬂgm_le+l
Ap = ﬂgmBm + 2mﬂgm_l7OBm+l

2m 2m _ 2m -
( 0 )’ﬁmcl"‘( . ),ﬁm 1'3102+...+(m_1>7in+1ﬂ;n lcm:O

1 1

m+1 m+1 m+1 -
)71"+1C1+( 1 )’7{"ﬂ102+---+(m_ )’ﬁﬂin 'Cm = Am+1

( :
(rg)’ﬁnCl*' ( T)'ﬁn_lﬁlcﬂ-'“*' ( mril )7}ﬂ{"‘lcm:Am

m-+2 m+ 2 m+ 2 -

0 )‘71"+2CI+( )7T+1ﬂ102+"'+(m_ )7?[3{" 'Cm =0
.+_

0

2m 2m - 2m -
0 ),ﬁle_*_( . ),7%"1 lﬂ2D2+'”+(m_l)7;n+l,B;n le:0

2 m+ 2 m-+ 2 _
)7?+2D1+< 1 )7?+1ﬂ2D2+'--+(m_1)7§ﬂ§" D, =0

1 m+1 m+1 _
)’7;"+1D1+< 1 )75"52D2+'-'+(m_1 )'ﬁﬂ;" 1D = Byt

m m _ m _
( 0 )’15”D1+( 1 )’75" 1ﬂ2D2+"'+(m_1 )’7%,35" 'Dpn = Bm.
It follows that

Y1Am = mMAnq, Y2Bm = mBpy 4
Am+1 = gm_le+1, Am = gmBm + Zmﬂgm_l’703m+1.

According to the conditions (4.2) and (4.3) we conclude that 4,, = Apy1 = By =
Bn+1 =0, then all A’s, B’s, C’s, and D’s are zero. This completes the proof.

Lemma 4.4 For n = 3, we take the minimal determining set for SI™(Ag) defined as in

[12).
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We first note the fact that if v is an interior vertex of deg(v) = 3 in A and vw is an
edge of A (where w is another interior vertex of A), then deg(w) > 4. Now we are in a
position to state the main results.

Theorem 4.5 For S§.(A) (r = 2m), let P be the union of the following sets of domain
points:

1.

For each interior vertez v; with deg(v;) = 3 in A, use Lemma 4.4 to choose a
minimal determining set for S (A*) on the disk D3, (v;) and mark the edge of A
whose middle point 1s not chosen in the process;

For each other interior vertex v; of A, use Lemma 4.8 to choose a determining set
Jor S5 (A*) on Dsp,(v;) such that vy in Lemma 4.8 corresponds to a certain one
verter in A, except for the middle points of edges marked;

For each boundary vertex v; (1 = Vi +1,---,Vi + Vp), use Lemma 2.2 to choose a
minimal determining set on Dsm(v;);

For each edge n = vivs of A, tn one of two triangles with n as an edge choose all
domain points which are distance less than 2m + 1 from n but out of D3y(v1) and

D3 (v2);

For each triangle of A, use items (2) and (8) of Theorem 4.2 to choose all of corre-
sponding domain points.

Then P 1s a minimal determining set for S; (A”).

Proof Clearly we can see that the cardinlity of P is given by

4P = (( 3'"2”)—2("‘;1 ))VB+§20,-+(2E+3N)('";1)

(2m2+2>VI+E(2;n)+3N(< 2m2—1)+(2m__1))+N_E
_ (6m2+2>+(4m2+1)E;+((2m2+2)_(6m2+2))vl,,

Vi
+Nm? + Za,-.

i=1

This quality is equal to that of (1.3) for r = 2m. The proof for the determining property
of P is very similar to that in the odd case, so we omit it here.

Theorem 4.6 For r = 2m (m > 1) there exists a local basis of space S}.(A*), say

A(P) ={Bp € S;,(A"): A\gBp =Apq, P,QE P}

And when P is in the set of items (1), (2) and (8) of Theorem 4.4, suppBp consists of all
triangles with a vertez at v; or another vertex u; adjacent to v; such that P € Dsp,(u;).
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For P in the set of item (4) suppBp composes of two triangles of A with n as an edge and
for P pn the set of item (5) suppBp is only one triangle of A containing P.

5. Super-spline subspaces

Super-spline subspaces were introduced and studied by some authors. In order to
discuss some subspaces of S (A*), following (3|, we can extend the concept of super-
spline.

Definition 5.1 Let A* be the HCT triangulation of a given triangulation A. We define
the subspace of SJ(A*) with enhanced smoothness p > r at the vertices of A by

SYP(AY)={se Sj(A"): se€l’(w),i=1;---,Vi}, (5.1)

where C#(v) = {s : s has derivatives up to order p at v}. We refer s € S;’(des) to
quasi-super-spline of SJ(A*).

Theorem 5.2 Let A* be the HCT triangulation of A. Then we have the following
dimensinal formulae:

dimS2™Sm=1(A") = ( A )v + (( o ) +(2m - 1)) E (1)

3(( 2'"2_1 ) +(3m—1)) N+N+V,+(m+1)Ve (2)

and

dimS2m LA™ (A7) = ( m +3 >v+ ( 2m +2 ) E+3(2’"+1 )N.

Remarks:

1. It is also possible to give similar results for the case where the enhanced smoothness
orderr<p<3m—1lforr=2mandr<p<3m+1forr=2m+1asin (3]

2. In [7] the interpolation problems for super-spline subspaces of Sj(A) with d > 3r+2
were discussed. We may study some interpolation schemes for S::: ‘3"'_1(A*) and

Sg,’::; A+l (A*) whose interpolants can be calculated out explicitly, and also can
proceed the approximation theorem by subspaces .5'62:: 3m=1(A*) and Sg::_t; SmAL(A¥),

3. When r = 2, the dimension formula about the spline space SZ(A*) may be estab-
lished necessarily in other ways. In [9], we construct an explicit interpolation scheme
for S2(A*), but the scheme is not local. We conjecture that in general there doesn’t
exist a local basis for SZ(A”).
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