References

- [1] P. Alfeld, On the dimension of piecewise polynomial functions, in Numerical Analysis, D.F. Griffiths and G.A. Watson eds., Longman Scientific Technical, London 1986, 1-23.
- [2] P. Alfeld and L.L. Schumaker, The dimension of bivariate spline spaces of smoothness r for degree $d \ge 4r + 1$, Constructive Approximation, Vol.3 (1987), 189-197.
- [3] P. Alfeld, B. Piper and L.L Schumaker, On the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1, Numer. Math. Vol.57 (1990), 651-661.
- [4] P. Alfeld, B. Piper and L.L. Schumaker. Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness r and degree $d \geq 4r + 1$, Computer Aided Geometric Design, Vol.4 (1987), 105-123.
- [5] P. Alfeld, B. Piper and L.L. Schumaker, An explicit basis for C1 quartic bivariate splines, SIAM J. Numer. Anal., Vol.24 (1987), 891-911.
- [6] C. deBoor, B-form basics, in Geometric Modelling, G. Farin eds., Society for Industrial and Applied Mathematics, Philadelphia PA, 1987.
- [7] C.K. Chui and M.J. Lai, On bivariate super vertex splines, CAT Report no. 164, 1988.
- [8] G. Farin, Triangular Bernstein-Bézier patches, Computer Aided Geometric Design, Vol. 3 (1986), 83-128.
- [9] J.B. Gao, A C^2 finite element and interpolation, Computing, Vol.50 (1993), 69-76.
- [10] J. MOrgan and R. Scott A nodal basis for C^1 piecewise poloynmials of degree $n \geq 5$, Math. Comp., Vol.29 (1975), 736-740.
- [11] L.L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, in Multivariate Approximation Theory, W. Schempp and K. Zeller eds., Basel, Birkhauser 1979,
- [12] L.L Schumaker, Dual bases for spline spaces on cells, Computer Aided Geometric Design, Vol.5 (1988), 277-284.

关于二元样条空间 $S_{3r}^r(\Delta^*)$ 的维数

高俊斌 (华中理工大学数学系,武汉430074)

摘 要

设Δ* 是任何三角剖分Δ 的HCT 细分的三角剖分,本文建立了定义于Δ* 上的二元样 条函数空间 $S_{3r}^{r}(\Delta^{*})$ 的维数公式,我们的证明方法同时给出了 $S_{3r}^{r}(\Delta^{*})$ 的一组显示的基函 数,并阐明基函数具有某种意义的局部最小支集.

On the Dimension of the Bivariate Splines Spaces $S_{3r}^r(\Delta^*)$

Gao Junbin

(Dept. of Math., Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract We establish the dimensional formula of the space of C^r bivariate piecewise polynomials defined on a triangulation Δ^* which comes from an original triangulation Δ of a connected polygonal domain with HCT subdivision for each triangle of Δ . Our approach is made by constructing a minimal determining set and an associated explicit basis for the space $S_{3r}^r(\Delta^*)$. The minimal determining set is defined well.

Key words multivariate spline, HCT triangulation, B-net, super-spline.

1. Introduction

Let $\Omega \subset \mathbb{R}^2$ be a connected polygonal domain, which does not allowed to contain any hole. Let Δ denote a triangulation of Ω and suppose that the triangles of Δ are labeled by $T^{[1]}, \cdots, T^{[N]}$. For each triangle $T^{[i]} = v_1^{[i]} v_2^{[i]} v_3^{[i]}$ (in counterclockwise order) we take one point $v_0^{[i]}$ in $T^{[i]}$ and connect vertex $v_0^{[i]}$ with vertices $v_k^{[i]}$ (k=1,2,3). It clearly results in a new triangulation Δ^* of Ω called HCT triangulation of Δ . In Δ^* , we refer $v_0^{[i]}$ to a new vertex and $v_0^{[i]} v_k^{[i]}$ (k=1,2,3) to new edges of Δ^* for $i=1,\cdots,N$. Denote $T_k^{[i]} = v_0^{[i]} v_k^{[i]} v_{k+1}^{[i]}$ (k=1,2,3), where k+1 mod 3. Given $0 \le r \le d$, the space of bivariate splines over this triangulation Δ^* is defined by

$$S_d^r(\Delta^*) = \{ s \in C^r(\Omega) : s|_{T_k^{[i]}} \in \mathbb{P}_d, \ i = 1, \dots, N, \ k = 1, 2, 3 \}, \tag{1.1}$$

where \mathbb{P}_d is the (d+1)(d+2)/2-dimensional linear space of polynomials of total degree d. On the dimension of $S_d^r(\Delta^*)$, a lower bound was given by Schumaker (cf. [11]) in terms of the number of interior and boundary vertices of Δ^* . When $d \geq 3r + 2$, C.K. Chui and M.J. Lai (cf. [7]) have proven that such lower bound is exactly the dimension of the space $S_d^r(\Delta^*)$. Since Δ^* is always the triangulation without vertices of degree 4 or 5, we can conclude that the dimension of $S_{3r+1}^r(\Delta^*)$ is equal to the lower bound from the work in my Ph.D Thesis. In this paper we prove the similar results about dimensions of $S_{3r}^r(\Delta^*)$ except r=2. We shall establish an upper bound which agrees with the lower bound and in the process obtain an explicit basis for $S_{3r}^r(\Delta^*)$. Our approach will use Bézier nets to

^{*}Received May 29, 1992. Partially supported by the Science Foundation of China, the Postdoctoral Science Foundation of China and the Science Foundation for Youths provided by HUST.

construct a certain minimal determining set of domain points. Now we introduce some further notation and present some general results which will be useful for determining the dimension of $S_{3r}^r(\Delta^*)$. Given a triangulation Δ , let Δ^* be a HCT triangulation of Δ , and denote

 $V_I \ (V_I^*) = ext{number of interior vertices of } \Delta \ (\Delta^*)$ $V_B \ (V_B^*) = ext{number of boundary vertices of } \Delta \ (\Delta^*)$ $E_I \ (E_I^*) = ext{number of interior edges of } \Delta \ (\Delta^*)$ $E_B \ (E_B^*) = ext{number of boundary edges of } \Delta \ (\Delta^*)$ $N \ (N^*) = ext{number of triangles of } \Delta \ (\Delta^*)$ $E = E_I + E_B, \quad E^* = E_I^* + E_B^* \quad \text{etc.}$

It is well-known that

$$E_B = E_B^* = V_B = V_B^*, \quad E_I = 3V_I + V_B - 3$$

$$E_I^* = 3V_I^* + V_B^* - 3, \quad N = 2V_I + V_B - 2, \quad N^* = 2V_I^* + V_B^* - 2$$

$$E_I^* = E_I + 3N, \quad V_I^* = V_I + N, \quad N^* = 3N$$

$$(1.2)$$

We assume that the vertices v_i , $i=1,\cdots,V^*$ of Δ^* are numbered in such a way that the first V_I of them are original interior vertices, i.e. the interior vertices of Δ , the N of them are interior vertices of Δ^* denoted by $v_{V_I+i}=v_0^{[i]}, \ v_0^{[i]}\in T^{[i]}, \ i=1,\cdots,N,$ and the remaining $V_B^*(=V_B)$ are boundary vertices. For each vertex v_i of Δ^* , let E_i denote the number of edges emanating from v_i , and e_i the number of distinct slopes assumed by these edges. Thus $E_i=e_i=3$ where $i=V_I+1,V_I+2,\cdots,V_I^*$. Then we have the following conclusion.

Lemma 1.1 Let Δ^* be a HCT triangulation of a given Δ . Then the lower bound for the dimension of $S_{3r}^r(\Delta^*)$ is given by

$$\dim S_{3r}^{r}(\Delta^{*}) \geq \begin{pmatrix} 3r+2\\2 \end{pmatrix} + \begin{pmatrix} 2r+1\\2 \end{pmatrix} E_{I}^{*} - \left[\begin{pmatrix} 3r+2\\2 \end{pmatrix} - \begin{pmatrix} r+2\\2 \end{pmatrix}\right] V_{I}^{*}$$

$$+ \sum_{i=1}^{V_{I}} \sigma_{i} + N \sum_{j=1}^{r} (r+1-2j)_{+} := lb^{*}, \qquad (1.3)$$

where

$$\sigma_i = \sum_{j=1}^r (r+j+1-j\,e_i)_+. \tag{1.4}$$

2. Preliminaries and tools

Following [3], in order to establish that formula (1.3) provides the actual dimension of $S_{3r}^r(\Delta^*)$, we shall use Bézier net techniques. Associated with any triangulation Δ , let

$$\mathcal{B} = \mathcal{B}_d := \bigcup_{l=1}^N \left\{ P_{ijk}^{[l]} = \frac{iv_1^{[l]} + jv_2^{[l]} + kv_3^{[l]}}{d}, \quad i+j+k=d \right\}, \quad (2.1)$$

where $v_1^{[l]}$, $v_2^{[l]}$ and $v_3^{[l]}$ are the vertices of the l-th triangle in counterclockwise order (for HCT triangulation Δ^* of Δ , we always take a certain new vertex as $v_1^{[l]}$ in any triangle of Δ^*). The set \mathcal{B} is called the set of Bézier ordinates or domain points. Say that the point $P_{ijk}^{[l]}$'s of distance d-i from the vertex $v_1^{[l]}$ (with similar definitions for the other two vertices). We also say that the point $P_{ijk}^{[l]}$ is of distance i from the edge opposite to $v_1^{[l]}$. The ring of order p around the vertex v is defined as

$$R_p(v) = \{ \text{Points which are distance } p \text{ from } v \},$$

and the disk of order p around v is

$$D_p(v) = \bigcup_{j=0}^p R_j(v).$$

As all are well-known, each spline $s \in S_d^r(\Delta)$ can be written in the form

$$s(x,y)=s_l(x,y) \qquad ext{ for } (x,y)\in T^{[l]}, \ \ l=1,\cdots,N,$$

where each $s_l(x, y)$ is a polynomial of degree d which can be written in Bernstein-Bézier form as follows

$$s_l(\alpha, \beta, \gamma) = \sum_{i+j+k=d} C_{ijk}^{[l]} \frac{d!}{i! j! k!} \alpha^i \beta^j \gamma^k,$$

where (α, β, γ) are the barycentric coordinates of a point (x, y) in the triangle $T^{[l]}$. Associated with each domain point $P \in \mathcal{B}$, we define a linear functional on $S_d^r(\Delta)$ by

 $\lambda_P s =$ the coefficient of s associated with the domain point P.

The set $\{(P, \lambda_P s)\}_{P \in \mathcal{B}}$ is called the Bézier net. If γ is a set of domain points, then we write

$$\Lambda_{\gamma} = \{ \lambda_P : P \in \Gamma \}.$$

Suppose that $\Gamma \subset \mathcal{B}$ contains m points, and that Λ_{Γ} has the property that it is a determining set for $S_d^r(\Delta)$ in the sense that

$$s \in S_d^r(\Delta)$$
 and $\lambda s = 0$ for all $\lambda \in \Lambda_{\Gamma}$ implies $s = uiv0$.

Then we have

Lemma 2.1 $\dim S_{3r}^r(\Delta) \leq m$.

The following Lemmas can be found in papers [3] and [7].

Lemma 2.2 Let v be a boundary vertex of Δ with E edges attached. Suppose that the triangles with vertices at v are numbered countereclockwise as $T^{[1]}, \dots, T^{[E-1]}$. Finally, let D denote the following set of domain points:

1. All domain points in $T^{[1]} \cap D_p(v)$,

2. For each $l=2,\cdots,E-1$, the domain points in the p-r rows of $T^{[l]}$ far away from $T^{[l-1]}$.

Then \mathcal{D} is a minimal determining set for $S_p^r(\Delta)$ on $\mathcal{D}_p(v)$ with

$$\#\mathcal{D}=\left(egin{array}{c} p+2 \ 2 \end{array}
ight)+\left(egin{array}{c} p-r+1 \ 2 \end{array}
ight)(E-2).$$

Lemma 2.3 Let v be an interior vertex of Δ with E edges attached, where e of them have different slopes. Then there exists a subset D of $D_p(v)$ with

$$\#\mathcal{D} = \left(\begin{array}{c} r+2\\ 2 \end{array}\right) + \left(\begin{array}{c} p-r+1\\ 2 \end{array}\right) E + \sum_{j=1}^{p-r} (r+j+1-je)_{+}$$

such that \mathcal{D} determines $S_d^r(\Delta)$ on $D_p(v)$.

The required points in Lemma 2.3 can be given explicitly (cf. [12]). Let $T_1 = v_1v_2v_3$ and $T_2 = v_1v_2v_4$ be shown in Fig.1. Define B-forms

$$P_n = \sum_{i+j+k=n} a_{ijk} \frac{n!}{i! j! k!} \lambda_1^i \lambda_2^j \lambda_3^k$$

and

$$Q_n = \sum_{i+j+k=n} b_{ijk} \frac{n!}{i! \, j! \, k!} \mu_1^i \mu_2^j \mu_3^k$$

on T_1 and T_2 , respectively, where $(\lambda_1, \lambda_2, \lambda_3)$ is the barycentric coordinate of (x, y) with respect to T_1 and (μ_1, μ_2, μ_3) is that with respect to T_2 .

Fig. 1

Lemma 2.4 Suppose that v_2 , v_3 and v_4 are not collinear. For $l \leq (n-2)/2$, given Bézier coordinates $\{a_{ijk}, b_{ijk} : j \geq 1\}$ and $\{a_{ijk} : j = 0, 0 \leq k \leq n-2l-2\}$ which satisfy the smoothness conditions of order up to n-2l-2 on v_1v_2 , if $\{a_{ijk} : j \geq 1\}$ and $\{b_{ijk} : j \geq 1\}$ satisfy the smoothness conditions of order up to n-1 on v_1v_2 , then for any given $\{a_{ijk}, b_{ijk} : j = 0, 0 \leq i \leq l\}$ there exists a unique set of coefficients $\{a_{ijk}, b_{ijk} : j = 0, l+1 \leq i \leq 2l+1\}$ such that $\{a_{ijk}\}$ and $\{b_{ijk}\}$ meet the C^n smoothness conditions on v_1v_2 .

The proof of Lemma 2.4 is referred to [7].

If we show that the dimension of $S_{3r}^r(\Delta^*)$ is bounded above by the equality in (1.3), then with Lemma 1.1 the dimension of $S_{3r}^r(\Delta^*)$ will be obtained. The cases where r is odd and even are treated separately in the following two sections.

3. The case for odd r

In this section we always assume that r is odd, say

$$r=2m+1$$

By the observations and Lemma 2.1 in Section 2 above, it suffices to construct a determining set for $S_{3r}^r(\Delta^*)$ with the number of elements given in (1.3). First we discuss the case that Δ consists of only one triangle T with three vertices v_1 , v_2 and v_3 (in counterclockwise order). Taking one vertex v_0 in T (in general, v_0 is the centroid point of T, i.e. $v_0 = \frac{1}{3}(v_1 + v_2 + v_3)$) and connecting v_0 with v_i (i = 1, 2, 3) result in a triangulation Δ_0 of T. Let $T_l = v_0 v_l v_{l+1}$, where l = 1, 2, 3 (l + 1 mod 3), and denote by $P^{[l]}(x, y)$ —the B-form of degree n over T_l such that

$$P^{[l]}(x,y) = \sum_{i+j+k=n} a^{[l]}_{ij\,k} \frac{n!}{i!\,j!\,k!} \lambda^i_1 \lambda^j_2 \lambda^k_3, \tag{3.1}$$

where $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ is the baycentric coordinates of (x, y) with respect to T_l and $a_{ijk}^{[l]}$ associates with the domain point $P_{ijk}^{[l]}$. The following will be devoted to discussing the structure of $S_{3r}^r(\Delta_0)$.

Lemma 3.1 Let r = 2m + 1, then

$$\dim S^r_{3r}(\Delta_0) = \left(\begin{array}{c} 2m+3\\ 2 \end{array}\right) + 3\left(\begin{array}{c} 4m+3\\ 2 \end{array}\right) + 2\left(\begin{array}{c} m+1\\ 2 \end{array}\right) \tag{3.2}$$

This lemma is the deduction of Lemma 2.3. Here we will construct a useful minimal determining set for $S_{3r}^r(\Delta_0)$.

Theorem 3.2 Suppose that r = 2m + 1. P_0 denotes the following set of domain points (with respect to $S_{3r}^r(\Delta_0)$):

1. For each triangle T_l (l = 1, 2, 3), all of the following points of

$$\left\{egin{aligned} P_{ijk}^{[l]}:\ i\geq 0,\ k\geq 0,\ j\geq 3m+2
ight\}igcup \left\{egin{aligned} P_{ijk}^{[l]}:\ k\geq 3m+2,\ j\geq 2m+2
ight\} \ igcup \left\{egin{aligned} P_{ijk}^{[l]}:\ i\leq 2m+1,\ j\leq 3m+1,\ k\leq 3m+1
ight\}, \end{aligned}
ight.$$

where i + j + k = 3r.

2. For each triangle T_l (l = 1, 2, 3) all the domain points of

$$\left\{ \left. P_{ijk}^{[l]}:\ i\geq 2m+2,\, j\geq m+1,\, k\geq m+1 \right\} ,$$

where i + j + k = 3r.

Then P_0 is a minimal determining set for $S_{3r}^r(\Delta_0)$ on Δ_0 .

Proof It is not difficult by counting that $\#\mathcal{P}_0 = \dim S^r_{3r}(\Delta_0)$. Then it suffices to prove that s = uiv0 while $\lambda_P s = 0$, for any $P \in \mathcal{P}_0$. First for each vertex v_l (l = 1, 2, 3), it follows from the construction of \mathcal{P}_0 and the smoothness conditions of s on v_0v_l (cf. [8]) that $\lambda_P s = 0$, so long as P in $D_{3m+1}(v_l)$. On the other hand, by (1) $\lambda_{P_{ijk}^{[l]}} s = 0$, provided that $i \leq 2m+1$ for l = 1, 2, 3. The conditions (2) imply that $\lambda_P s$ with P belonging

to $\{P_{ijk}^{[l]}: j \leq m \text{ or } k \leq m\}$ (l=1,2,3) are undetermined. Moreover, for each vertex v_l (l=1,2,3), step by step using Lemma 2.4 for the domain points in the (3m+2)th row to the (5m+2)th row far away from v_l , we can prove that $\lambda_P s = 0$ except for P belonging to $\{P_{ijk}^{[l]}: j \leq m \text{ and } k \leq m\}$. Finally, it follows that $\lambda_P s = 0$ for any domain point P of Δ_0 utilizing Lemma 2.4 with regard to v_l and the smoothness conditions of order up to r on v_0v_2 and v_0v_3 .

This completes the proof.

Theorem 3.3 For $S_{3r}^r(\Delta^*)$ (r=2m+1), let \mathcal{P} consist of the following sets of domain points:

- 1. For each interior vertex v_i ($i = 1, 2, \dots, V_I$), use Lemma 2.3 to choose a minimal determining set on the disk $D_{3m+1}(v_i)$ for $S_{3r}^r(\Delta^*)$.
- 2. For each boundary vertex v_i $(i = V_I^* + 1, V_I^* + 2, \dots, V_I^* + V_B^*)$, use Lemma 2.2 to choose a determining set on $D_{3m+1}(v_i)$.
- 3. For each edge $\eta = v_1v_2$ of Δ , in one of two triangles with η as an edge choose the all domain points which are distance less than 2m + 2 from η but out of $D_{3m+1}(v_1)$ and $D_{3m+1}(v_2)$.
- 4. For each new vertex $v_0^{[l]}$ of Δ^* $(l = 1, 2, \dots, N)$, let $v_0^{[l]}$ be in the triangle $T^{[l]} = v_1^{[l]}v_2^{[l]}v_3^{[l]}$ in counterclockwise order. Choose all of domain points of $D_{4m+1}(v_0^{[l]}) \cap D_{5m+2}(v_k^{[l]}) \cap D_{5m+2}(v_{k+1}^{[l]})$ (k = 1, 2, 3).

Then \mathcal{P} is a determining set for $S_{3r}^r(\Delta^*)$ and

$$\mathrm{dim} S^r_{3r}(\Delta^*) = \left(egin{array}{c} 6m+5 \ 2 \end{array}
ight) - \left(\left(egin{array}{c} 6m+5 \ 2 \end{array}
ight) - \left(egin{array}{c} 2m+3 \ 2 \end{array}
ight) \left(V_I + N
ight) \ + \left(egin{array}{c} 4m+3 \ 2 \end{array}
ight) \left(E_I + 3N
ight) + 2N \left(egin{array}{c} m+1 \ 2 \end{array}
ight) + \sigma,$$

where $\sigma = \sum_{i=1}^{V_I} \sigma_i$ and σ_i is defined as (1.4).

Proof We first check the cardinality of P. The cardinality of sets in (1), (2), (3) and (4) are, respectively,

$$egin{aligned} \sum_{i=1}^{V_I} \left[\left(egin{array}{c} 2m+3 \ 2 \end{array}
ight) + \left(egin{array}{c} m+1 \ 2 \end{array}
ight) E_i + \sigma_i
ight], \ \sum_{j=1}^{V_B} \left[\left(egin{array}{c} 3m+3 \ 2 \end{array}
ight) + \left(egin{array}{c} m+1 \ 2 \end{array}
ight) \left(E_{V_I^{ullet}+j} - 2
ight)
ight], \ \sum_{i=1}^{E} \left(egin{array}{c} 2m+2 \ 2 \end{array}
ight) & ext{and} & 3N \left(egin{array}{c} 2m+1 \ 2 \end{array}
ight). \end{aligned}$$

Thus we see that the cardinality of P is given by

$$\#\mathcal{P} = \left(\left(\begin{array}{c}3m+3\\2\end{array}\right) - 2\left(\begin{array}{c}m+1\\2\end{array}\right)\right)V_B + \left(2E+3N\right)\left(\begin{array}{c}m+1\\2\end{array}\right)$$
 $\left(\begin{array}{c}2m+3\\2\end{array}\right)V_I + 3N\left(\begin{array}{c}2m+1\\2\end{array}\right) + \left(\begin{array}{c}2m+2\\2\end{array}\right)E + \sum_{i=1}^{V_I}\sigma_i$

Using (2.1), it is easy to see that this formula reduces to the expression in (1.3).

It remains to check that P is a determining set for $S_{3r}^r(\Delta^*)$. For each vertex v_i ($i=1,\cdots,V_I,V_I^*+1,\cdots,V_I^*+V_B^*$), it is clear that $\lambda_P s=0$ for any $P\in D_{3m+1}(v_i)$ on Δ^* , because of the points of P chosen in items (1) and (2). For each triangle of Δ^* , some one edge $\eta=v_1v_2$ ($v_1,v_2\in\Delta$) of that triangle must be the edge of Δ . On this triangle the set A of all domain points which are of distance less than 2m+2 from η but out of $D_{3m+1}(v_1)$ or $D_{3m+1}(v_2)$, is contained in P or not. Thus we can see that $\lambda_P s=0$ for $P\in A$ with (3) or the smoothness conditions of order up to r on η . Finally, by Theorem 3.2, we may prove that $\lambda_P s=0$ for any domain point P in each triangle of Δ . Thus s=uiv0, because all of the Bézier coordinate of s are zero and the theorem is established.

The following theorem follows immediately from Theorem 3.3.

Theorem 3.4 There exists a local explicit basis of $S_{3r}^r(\Delta^*)$, say $A(P) = \{B_p \in S_{3r}^r(\Delta^*) : \lambda_Q B_P = \Delta_{QP}$, for any $P, Q \in P\}$. And when P is in the set of items (1) and (2) of Theorem 3.3, supp B_P consists of all of the triangles of Δ with vertices at v_i . For P in the set of item (3) of Theorem 3.3, supp B_P consists of two triangles of Δ with η as an edge, and for P in the set of item (4) supp B_P is only one triangle of Δ which contains P.

4. The case for even r

In this section we will establish the similar conclusions as the preceding section in the case where r is even, say

$$r=2m \qquad (m>1)$$

Let Δ_0 , etc. be defined as the preceding section. Then from Lemma 2.2, it follows that

Lemma 4.1 Suppose that r = 2m, then

$$\dim S_{3r}^r(\Delta_0) = \left(\begin{array}{c} 2m+2\\ 2 \end{array}\right) + 3\left(\begin{array}{c} 4m+1\\ 2 \end{array}\right) + m^2.$$
 (4.1)

Now we give a useful minimal determining set for $S_{3r}^r(\Delta_0)$.

Theorem 4.2 Let P_0 denote the following set of domain points:

1. For each triangle T_l (l = 1, 2, 3), choose all of the domain points of

$$\left\{egin{aligned} P_{ijk}^{[l]}:\ j \geq 3m+1
ight\} igcup \left\{egin{aligned} P_{ijk}^{[l]}:\ j \geq 3m+1,\ k \geq 3m+1
ight\} \ igcup \left\{egin{aligned} P_{ijk}^{[l]}:\ i \leq 2m,\ j \leq 3m,\ k \leq 3m \end{array}
ight\} \end{aligned}$$

except for $P_{(2m,3m,m)}^{[l]}$, where i+j+k=3r.

2. For each triangle T_l (l=1,2,3), choose all of the points of

$$\left\{egin{aligned} P_{ijk}^{[l]}:\ i \geq 2m+1,\ j \geq m+1,\ k \geq m+1 \end{array}
ight\} \ igcup_{ijk}^{[l]}:\ m+1 \leq j \leq 3m-1,\ i+j = 6m \end{array}
ight\},$$

where i + j + k = 3r.

3. For only one triangle, say T_1 , choose $P_{(5m,m,0)}^{[1]}$.

Then \mathcal{P}_0 is a determining set for $S_{3r}^r(\Delta_0)$ on Δ_0 .

Proof It is not difficult by counting that $\#\mathcal{P}_0 = \dim S_{3r}^r(\Delta_0)$. Then it suffices to prove that s = uiv0 while $\lambda_P = 0$, for any $P \in \mathcal{P}_0$. First for each vertex v_l (l = 1, 2, 3), on $R_{3m}(v_l)$, the Bézier ordinates associated with the domain points in $\{P_{ijk}^{[l]}: j = 3m, 0 \leq k \leq m\} \cup \{P_{ijk}^{[l]}: 1 \leq j \leq m-1, k=3m\}$ are undetermined. The number of those ordinates is 2m. Using \mathcal{C}^{2m} smoothness conditions on $R_{3m}(v_l)$ results in that all of ordinates are zero. Second, along $R_j(v_l)$ $(3m+1 \leq j \leq 5m)$, according to \mathcal{C}^{2m} smoothness conditions (cf. Lemma 2.4), we can conclude that all Bézier ordinates except for that associated with the doamin points in $\{P_{ijk}^{[l]}: 0 \leq j \leq m, 0 \leq k \leq m\}$, on each triangle

 T_l , are zero. Finally by, using C^{2m} smoothness conditions on $R_{5m+1}(v_1)$ and then on v_0v_l (l=1,2,3) we will show that give all Bézier ordinates are zero. This completes the proof.

Given a triangulation Δ_{2n} , in which there is only one interior vertex v, be shown in Fig.2. Let $\theta_i = \text{angle } v_i v v_{i+1} \ (i \in \mathbb{Z}_n)$ in counterclockwise order. If $n \geq 4$, then there exists $i_0 \in \mathbb{Z}_n$ such that $\theta_{i_0} + \theta_{i_0+1} < \pi$. Without loss of the generality, suppose that $i_0 = 1$.

Let $v_2 = \alpha_1 v + \beta_1 v_3 + \gamma_1 w_2$, $v_2 = \alpha_2 v + \beta_2 v_1 + \gamma_2 w_1$, and $w_2 = \alpha_0 v + \beta_0 w_1 + \gamma_0 v_2$, then we have the conditions

Fig. 2

$$\gamma_0 \gamma_1 \gamma_2 + \gamma_1 \beta_0 - \gamma_2 \ge 0 \tag{4.2}$$

and

$$\gamma_i > 0 \tag{4.3}$$

Let $n \geq 4$ and the above conditions are satisfied. We define the following domain point set \mathcal{D} on $D_{3m}(\Delta_{2n})$:

- 1. The minimal determining set on $D_{3m-1}(\Delta_{2n})$ for $S_{3m-1}^{2m}(\Delta_{2n})$;
- 2. On boundary edges of Δ_{2n} , in counterclockwise order, take 2m+1 points from v_1 , 2m-1 points from v_2 , m points from v_i and w_i where $i \geq 3$, respectively.

Lemma 4.3 The D is a minimal determining set for $S_{3m}^{2m}(\Delta_{2n})$ on Δ_{2n} .

Proof On Δ_{2n} the remaining undetermined Bézier ordinates are $A_1, \dots, A_m, A_{m+1}, B_1, \dots, B_m, B_{m+1}, C_1, \dots, C_m$ and D_1, \dots, D_m by construction of \mathcal{D} and smoothness conditions. We will see that smoothness conditions on vv_2, vw_2 and vw_1 result in the following system:

$$\begin{split} A_{m+1} &= \beta_0^{2m-1} B_{m+1} \\ A_m &= \beta_0^{2m} B_m + 2m \beta_0^{2m-1} \gamma_0 B_{m+1} \\ \left(\begin{array}{c} 2m \\ 0 \end{array} \right) \gamma_1^{2m} C_1 + \left(\begin{array}{c} 2m \\ 1 \end{array} \right) \gamma_1^{2m-1} \beta_1 C_2 + \dots + \left(\begin{array}{c} 2m \\ m-1 \end{array} \right) \gamma_1^{m+1} \beta_1^{m-1} C_m = 0 \\ \dots & \dots & \dots \\ \left(\begin{array}{c} m+2 \\ 0 \end{array} \right) \gamma_1^{m+2} C_1 + \left(\begin{array}{c} m+2 \\ 1 \end{array} \right) \gamma_1^{m+1} \beta_1 C_2 + \dots + \left(\begin{array}{c} m+2 \\ m-1 \end{array} \right) \gamma_1^{3} \beta_1^{m-1} C_m = 0 \\ \left(\begin{array}{c} m+1 \\ 0 \end{array} \right) \gamma_1^{m+1} C_1 + \left(\begin{array}{c} m+1 \\ 1 \end{array} \right) \gamma_1^{m} \beta_1 C_2 + \dots + \left(\begin{array}{c} m+1 \\ m-1 \end{array} \right) \gamma_1^{2} \beta_1^{m-1} C_m = A_{m+1} \\ \left(\begin{array}{c} m \\ 0 \end{array} \right) \gamma_1^{m} C_1 + \left(\begin{array}{c} m \\ 1 \end{array} \right) \gamma_1^{m-1} \beta_1 C_2 + \dots + \left(\begin{array}{c} m \\ m-1 \end{array} \right) \gamma_1^{1} \beta_1^{m-1} C_m = A_m \\ \left(\begin{array}{c} 2m \\ 0 \end{array} \right) \gamma_2^{2m} D_1 + \left(\begin{array}{c} 2m \\ 1 \end{array} \right) \gamma_2^{2m-1} \beta_2 D_2 + \dots + \left(\begin{array}{c} 2m \\ m-1 \end{array} \right) \gamma_2^{m+1} \beta_2^{m-1} D_m = 0 \\ \dots & \dots & \dots \\ \left(\begin{array}{c} m+2 \\ 0 \end{array} \right) \gamma_2^{m+2} D_1 + \left(\begin{array}{c} m+2 \\ 1 \end{array} \right) \gamma_2^{m+1} \beta_2 D_2 + \dots + \left(\begin{array}{c} m+2 \\ m-1 \end{array} \right) \gamma_2^{3} \beta_2^{m-1} D_m = 0 \\ \left(\begin{array}{c} m+1 \\ 0 \end{array} \right) \gamma_2^{m+1} D_1 + \left(\begin{array}{c} m+1 \\ 1 \end{array} \right) \gamma_2^{m} \beta_2 D_2 + \dots + \left(\begin{array}{c} m+1 \\ m-1 \end{array} \right) \gamma_2^{2} \beta_2^{m-1} D_m = B_{m+1} \\ \left(\begin{array}{c} m \\ 0 \end{array} \right) \gamma_2^{m} D_1 + \left(\begin{array}{c} m \\ 1 \end{array} \right) \gamma_2^{m-1} \beta_2 D_2 + \dots + \left(\begin{array}{c} m \\ m-1 \end{array} \right) \gamma_2^{1} \beta_2^{m-1} D_m = B_m. \end{split}$$

It follows that

$$\gamma_1 A_m = m A_{m+1}, \qquad \gamma_2 B_m = m B_{m+1}
A_{m+1} = \beta_0^{2m-1} B_{m+1}, \qquad A_m = \beta_0^{2m} B_m + 2m \beta_0^{2m-1} \gamma_0 B_{m+1}.$$

According to the conditions (4.2) and (4.3) we conclude that $A_m = A_{m+1} = B_m = B_{m+1} = 0$, then all A's, B's, C's, and D's are zero. This completes the proof.

Lemma 4.4 For n=3, we take the minimal determining set for $S_{3m}^{2m}(\Delta_6)$ defined as in [12].

We first note the fact that if v is an interior vertex of deg(v) = 3 in Δ and vw is an edge of Δ (where w is another interior vertex of Δ), then $deg(w) \geq 4$. Now we are in a position to state the main results.

Theorem 4.5 For $S_{3r}^r(\Delta^*)$ (r=2m), let P be the union of the following sets of domain points:

- 1. For each interior vertex v_i with $deg(v_i) = 3$ in Δ , use Lemma 4.4 to choose a minimal determining set for $S_{3r}^r(\Delta^*)$ on the disk $D_{3m}(v_i)$ and mark the edge of Δ whose middle point is not chosen in the process;
- 2. For each other interior vertex v_i of Δ , use Lemma 4.3 to choose a determining set for $S_{3r}^r(\Delta^*)$ on $D_{3m}(v_i)$ such that v_1 in Lemma 4.3 corresponds to a certain one vertex in Δ , except for the middle points of edges marked;
- 3. For each boundary vertex v_i ($i = V_I + 1, \dots, V_I + V_B$), use Lemma 2.2 to choose a minimal determining set on $D_{3m}(v_i)$;
- 4. For each edge $\eta = v_1v_2$ of Δ , in one of two triangles with η as an edge choose all domain points which are distance less than 2m + 1 from η but out of $D_{3m}(v_1)$ and $D_{3m}(v_2)$;
- 5. For each triangle of Δ , use items (2) and (3) of Theorem 4.2 to choose all of corresponding domain points.

Then P is a minimal determining set for $S_{3r}^r(\Delta^*)$.

Proof Clearly we can see that the cardinlity of P is given by

$$\#P = \left(\left(\begin{array}{c} 3m+2 \\ 2 \end{array} \right) - 2 \left(\begin{array}{c} m+1 \\ 2 \end{array} \right) \right) V_B + \sum_{i=1}^{V_I} \sigma_i + (2E+3N) \left(\begin{array}{c} m+1 \\ 2 \end{array} \right)$$

$$\left(\begin{array}{c} 2m+2 \\ 2 \end{array} \right) V_I + E \left(\begin{array}{c} 2m \\ 2 \end{array} \right) + 3N \left(\left(\begin{array}{c} 2m-1 \\ 2 \end{array} \right) + (2m-1) \right) + N - E$$

$$= \left(\begin{array}{c} 6m+2 \\ 2 \end{array} \right) + \left(\begin{array}{c} 4m+1 \\ 2 \end{array} \right) E_I^* + \left(\left(\begin{array}{c} 2m+2 \\ 2 \end{array} \right) - \left(\begin{array}{c} 6m+2 \\ 2 \end{array} \right) \right) V_I^*$$

$$+Nm^2 + \sum_{i=1}^{V_I} \sigma_i.$$

This quality is equal to that of (1.3) for r = 2m. The proof for the determining property of P is very similar to that in the odd case, so we omit it here.

Theorem 4.6 For r = 2m (m > 1) there exists a local basis of space $S_{3r}^r(\Delta^*)$, say

$$A(\mathcal{P}) = \{ \mathcal{B}_{\mathcal{P}} \in S_{3r}^r(\Delta^*) : \lambda_{\mathcal{Q}} \mathcal{B}_{\mathcal{P}} = \Delta_{\mathcal{PQ}}, P, Q \in \mathcal{P} \}$$

And when P is in the set of items (1), (2) and (3) of Theorem 4.4, supp B_P consists of all triangles with a vertex at v_i or another vertex u_i adjacent to v_i such that $P \in D_{3m}(u_i)$.

For P in the set of item (4) supp B_P composes of two triangles of Δ with η as an edge and for P pn the set of item (5) supp B_P is only one triangle of Δ containing P.

5. Super-spline subspaces

Super-spline subspaces were introduced and studied by some authors. In order to discuss some subspaces of $S_{3r}^r(\Delta^*)$, following [3], we can extend the concept of superspline.

Definition 5.1 Let Δ^* be the HCT triangulation of a given triangulation Δ . We define the subspace of $S_d^r(\Delta^*)$ with enhanced smoothness $\rho \geq r$ at the vertices of Δ by

$$S_d^{r,\rho}(\Delta^*) = \{ s \in S_d^r(\Delta^*) : \quad s \in \mathcal{C}^\rho(v_i), i = 1, \cdots, V_I \}, \tag{5.1}$$

where $C^{\rho}(v) = \{s : s \text{ has derivatives up to order } \rho \text{ at } v\}$. We refer $s \in S_d^{r,\rho}(des)$ to quasi-super-spline of $S_d^r(\Delta^*)$.

Theorem 5.2 Let Δ^* be the HCT triangulation of Δ . Then we have the following dimensinal formulae:

$$\dim S_{6m}^{2m,3m-1}(\Delta^*) = \begin{pmatrix} 3m+1\\2 \end{pmatrix} V + \begin{pmatrix} 2m\\2 \end{pmatrix} + (2m-1) \end{pmatrix} E$$

$$3 \begin{pmatrix} 2m-1\\2 \end{pmatrix} + (3m-1) N + N + V_s + (m+1)V_B$$
 (2)

and

$$\mathrm{dim}S^{2m+1,3m+1}_{6m+3}(\Delta^{\star})=\left(\begin{array}{c}3m+3\\2\end{array}\right)V+\left(\begin{array}{c}2m+2\\2\end{array}\right)E+3\left(\begin{array}{c}2m+1\\2\end{array}\right)N.$$

Remarks:

- 1. It is also possible to give similar results for the case where the enhanced smoothness order $r \le \rho \le 3m-1$ for r=2m and $r \le \rho \le 3m+1$ for r=2m+1 as in [3].
- 2. In [7] the interpolation problems for super-spline subspaces of $S_d^r(\Delta)$ with $d \geq 3r+2$ were discussed. We may study some interpolation schemes for $S_{6m}^{2m,3m-1}(\Delta^*)$ and $S_{6m+3}^{2m+1,3m+1}(\Delta^*)$ whose interpolants can be calculated out explicitly, and also can proceed the approximation theorem by subspaces $S_{6m}^{2m,3m-1}(\Delta^*)$ and $S_{6m+3}^{2m+1,3m+1}(\Delta^*)$
- 3. When r=2, the dimension formula about the spline space $S_6^2(\Delta^*)$ may be established necessarily in other ways. In [9], we construct an explicit interpolation scheme for $S_6^2(\Delta^*)$, but the scheme is not local. We conjecture that in general there doesn't exist a local basis for $S_6^2(\Delta^*)$.

References

- [1] P. Alfeld, On the dimension of piecewise polynomial functions, in Numerical Analysis, D.F. Griffiths and G.A. Watson eds., Longman Scientific Technical, London 1986, 1-23.
- [2] P. Alfeld and L.L. Schumaker, The dimension of bivariate spline spaces of smoothness r for degree $d \ge 4r + 1$, Constructive Approximation, Vol.3 (1987), 189-197.
- [3] P. Alfeld, B. Piper and L.L Schumaker, On the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1, Numer. Math. Vol.57 (1990), 651-661.
- [4] P. Alfeld, B. Piper and L.L. Schumaker. Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness r and degree $d \geq 4r + 1$, Computer Aided Geometric Design, Vol.4 (1987), 105-123.
- [5] P. Alfeld, B. Piper and L.L. Schumaker, An explicit basis for C1 quartic bivariate splines, SIAM J. Numer. Anal., Vol.24 (1987), 891-911.
- [6] C. deBoor, B-form basics, in Geometric Modelling, G. Farin eds., Society for Industrial and Applied Mathematics, Philadelphia PA, 1987.
- [7] C.K. Chui and M.J. Lai, On bivariate super vertex splines, CAT Report no. 164, 1988.
- [8] G. Farin, Triangular Bernstein-Bézier patches, Computer Aided Geometric Design, Vol. 3 (1986), 83-128.
- [9] J.B. Gao, A C^2 finite element and interpolation, Computing, Vol.50 (1993), 69-76.
- [10] J. MOrgan and R. Scott A nodal basis for C^1 piecewise poloynmials of degree $n \geq 5$, Math. Comp., Vol.29 (1975), 736-740.
- [11] L.L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, in Multivariate Approximation Theory, W. Schempp and K. Zeller eds., Basel, Birkhauser 1979,
- [12] L.L Schumaker, Dual bases for spline spaces on cells, Computer Aided Geometric Design, Vol.5 (1988), 277-284.

关于二元样条空间 $S_{3r}^r(\Delta^*)$ 的维数

高俊斌 (华中理工大学数学系,武汉430074)

摘 要

设Δ* 是任何三角剖分Δ 的HCT 细分的三角剖分,本文建立了定义于Δ* 上的二元样 条函数空间 $S_{3r}^{r}(\Delta^{*})$ 的维数公式,我们的证明方法同时给出了 $S_{3r}^{r}(\Delta^{*})$ 的一组显示的基函 数,并阐明基函数具有某种意义的局部最小支集.