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Careless Mistake, Correction and Analysis of the
Kornai-Weibull Queue Model *

Liu Xingquan
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Abstrict We find that the definition of the service rate r(y, ) in Kornai-Weibull’s queue-
ing model (A) is incorrect, and the correct definition of the service rate r(y,, y2) is given.
We prove that the revised model (1) have a ‘mormal state’ if and only if service capacity
S < Ayxn/(Ax + (1= A)).
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I. Queueing model

Kornai-Weibull's queueing model of a market in a shortage economy is a part of Kor-
nai’s theory of shortage, one of the most important economic therories developed recently.
Kornai and Weibull (1977) establish and research the model, which is described by a sys-
tem of ordinary differential equations [also see Kornai and weibull (1978). Kornai (1980)].
Global stability of a stationary point of this system has a very important interpretation in
the theory of shortag, where the stationary point describes a normal state of the market.

Only in view of a simple modei. Kornai and Weibull try to give the existence proof of
normal state by strict logical reasoning. Here, let us redescribe this model. We consider a
market trading one good only. The price of the good is constant. This good is being traded
in indivisible items. Each buyer can buy only one item. There is only one seller and there
are n buyers. There is substitute to be sold in another market. It is assumed that the
substitute is cheaper than the good and is available without queueing. First of all, a buyer
must decide whether the price of a good is acceptable for him in the process of shopping.
If he doesn’t accept the price, he buys a substitute. If he accepts the price, he considers
the queueing time. If he accepts the queueing time, he joins the queue. Otherwise, he
buys the substitute. So, at any time, every buyer is either queueing, or consuming the
good, or consuming the substitute.

At any time ¢, we denote by y;(¢) the number of queueing buyers, by y»(t) the number
of buyers consuming the good, by ys(t) the number of buyers consuming the substitute.
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The process of shoping is described by the following system of equations.

d

% = do(y1)(vy2 + xy3) — r(v1),

-%2- = r(y1) — 12, (™
Ty:' = (1 - Ap(y1))(vy2 + xy3) — xy3,

where A is the initial buying propensity and depends only on the price of the good, ©(y1) is
the queueing propensity and depends on the queue length y;,~ is the need-renewal rate of
the good, and x is the need-renewal rate of the substitute (1/4 is average good satisfaction
time, and 1/x is average substitute satisfaction time), r(y;) is the service rate, the number
of buyers served per time unit. Kornali and Weibull consider that it depends only on the
queue length y;, and denote

_ S if y>0,
'(y‘)_{o if y1 =0,

where S is constant. It is called the service capacity, the maximal number of buyers served
per time unit. M = (n,S, A, 9,4, x) is defined as a market. A three-dimensional vector
y = (v1,y2,y3) is called state of the market. Aset Y = {y:y€ R, y1 >0, y2 >0, ys >
0, y1 + y2 + y3 = n} is called a set of feasible states of the market M. We know that
variables y;,y2 and y3 is dependent from y; + y2 + y3 = n. Relevantly, the sum of three

. . d .
equations of system (A) is E(yl + y2 +y3) = 0. Putting y3 = n — y; — y2, we have a
system

where y = ( ZI ),
2

fly) = ( f1(v1, %) ) 5 ( Ae()lra + X(n = w1 = va)] = r(31) ) (©)

faly,y2) | r(y1) — vy2

dy

) ()

and a set of reduced feasible states Y = {y:y € R?, y; >0, y2 > 0, y1 + y2 < n}. Here,
the question is: Under what conditions, system (B) has the following four properties?

(1) There exists exactly one stationary point § of system (B), and § € Int Y;
(2) The stationary point § of system (B) is locally asymptotically stable;

(3) For every yo € Y, there exists exactly one solution y(t;yo) of system (B) such that
y|t=0 = yo and y(t; yo) is defined on [0,00) and y(t) € Y for all t > 0;

(4) for every yo € ?,t_léinoo y(t;y0) = §.
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1-A A
by assumption (IV) we obtain that —1 > —§, 5 X and 91 > X%
n

™ Noting that

S* — Ayne(yy) ) nl - %So(yf) < Axn
1-Ax X 1-Ax ~ 1-2Ax
we have that for 0 < y; < y*, p(y1) > 0. Therefore, if y € ¥, 0 < y; < yji, then

Oh(y1,y2) dh(y1,0)
oy

y; < < gla

= —A(x — 7)e(y1) < 0. Since =1+ Ax@'(y1)(n - v1) = Axe(y1)

h(y1,0) > h(0,0) = Axn > S* > S (0 < y; < n).

y1+Axe(y)(n—n)-S5 a
= such

Ax = 7)e(y) Vi)
that h(y;,y2) = Sand 0 < y2 = Y1(y1) < n—wy1 (0 < y; < y;). Let S; denotes the

curve fulfilled y; = ¥1(y1) (0 < y1 < yj). Because, for 0 < y; < yj, ?—}—l—((—;/—lly—z) < 0;
Y2

for y; < y1 < n, <0, then D; = {y : 0 < y1 €< 95, ¥1(w1) < y2 < n— w1},

.2 .
Dy={y:0<y: < 'l’lz{yl) (0<y1 <yj), 0<y2<n—-y (y; <1 <n)}. By the above
demonstration, we obtain that

For every y; € [0, y;], there exists only one y, =
h(y1,y2)
d

Lemma 2 IfA<1,Ayn< S < S*, then

y1+ de(y) vy + x(n — y1 — y2)], for z: \ € D,
’(yl,yz) =

S for 1 € D,.
Y2
Lemma 3 The curve Sy :y; = ¢1(v1) (0 < y1 < yy) s above the line Sy : y2 = S/y

S
0<y<n-— ;) That 15 to say, ¥1(y1) > S/v (0 <y < 7).

Axn—8S A, . .. Axn—S~ Axrn S~
= —>—— = y;. Obviously, y; > =
Mx-v 7 ’

Mx -7  Mx+(@-2)7 7

Proof First, ¢,(0)

S ] d | | |
> ; So, if we demonstrate ’f’dl (y1)_ >0 (0<y <y) the Lemma is proved. In fact, if
Y1
0 < y; < yj, then
di1(y1) 1 ’
= 1 + A n — — /\
dy Alx = 7)9%(y1) {l xe'(y1)(n — y1) — Axe(y1)le(v)

= [y1 + Axe(y1)(n - y1) - Sle'(n1)}

- A(x - ,:)(Pz(yl) (1 = Axe(y1))e(v1) + (S — i)@' (v1)].

From assumption (IV), we obtain

v
o(y) = /(; Pl(r)dr+1>1-

1-Ax
Axn

Y1
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According to the service rate r(y;) difined by Kornai and Weibull, none good can be sold
in the market without queueing, and the number of buyers consuming goods is monotonic
decreasing. Obviously, it is very absurd.

The revised queueing model is

‘f?‘il = Ap(y1)[vyz2 + xys] — r(y1,92),
% = r(y1,¥2) — %2, M
dl: = (1 - dp(n))(vyz + xy3) — xys,
and dy
= =) @

where y = ( zl ),
2

fly) = ( f1(y1, 42) ) Py ( Ao(y1)[vyz + x(n = y1 = v2)] = r(y1,92) ) _ (3)

f2(y1,y2) r(y1,y2) — 7Yz
We shall assume that
(I) A,v,x and S are constants,and 0 < A< 1,0<y< x, 0< S;

() The function ¢ : [0,00) — [0;1] is nonincreasing of class C!, with ¢(0) = 1, p(y1) <
1 (y1>0), o(y1) =0 (y1 > n);

(IM 0<y<x<1/2

1- )y

(V) 02 ¢'(n1) > - pyom

Assumptions (I), (II) are original and practical. Assumption (Il) is easy to bring about
so long as we select suitable unit of time t. Assumption (IV) imposes restrictions on the
speed at which the queueing propensity drops with the increase of the queue length y;. It
is reasonable also.

The main result of this paper is the following theorem.

a Axyn

_ A+ (A=A
system (2) has only unique stationary point § € Int Y and is globally asymptotically stable
in the set Y. On the contrary, if system (2) has only unique stationary point § € Int Y
onY, then we have S < S™.

According to the thecrem, we know that, if assumptions (I),(II),(II) and (IV) are ful-
filled, S < S~ is a necessary and sufficient condition under which system (1) has the
normal state. From § € Int ¥ we obtain that, §; > 0, where g is the average queue
length. ¢ = yj/s we call the average queueing time. For y, > 0,f > 0. £ mirrors exactly

Theorem Let assumptions (I),(I),(H) and (IV) kold, if S < S~ then
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a basic feature of a market in a shortage economy. Then S* is a quantity index. By it,
we can judge whether a market is short or not. That is to say, if S < S*, the market is
short, and if S > S~ the market is not short. In words, S* is a branch value by which we
can judge whether a market is short or not.

2. Proof of theorem

At first, we analyse the valuation of the function r(yj,y2) in system (2) in Y. In Y,
we obtain from 0 < 4 < yx that
Oh(y1,y2)

< 0.
dyz ~

If 0 < y; < n, then

a

h(y1,y2) > h{y1,n — y1) = y1 + Ae(y1)v(n — 1) = ¥(n).

By assumptions (I) and (IV), We obtain that

d(y1)

Ay = 1-dp(yi)v+ Ay (n—u)e' (1) > 1= Ay +Ayne' (1) > 1—% >0, (0<y <n)

For y € Y, we always have

h(y1,y2) > ¥(y1) > ¥(0) = h(0,n) = Ayn.
Actually, we have proved the following lemma.

Lemma 1 IfA=1,5S <qn or A <1, S < Ayn we always have r(y;,y2) =S in Y.

A -
IfA<1,yvn< S <S8 2 _X’m—, the valuation of r(y;,y2) in Y becomes more
Ax+(1- )
complicated. Obviously,

GY:LlULzLJL:;,

where
Ly: y1=0 (0 < y2 < n),
Ly: y2=0 (0 <y < n),
Ly: ya=n-y (0<y <n)

From h(0,n) = Ayn < S, h(n,0) = n > Axn > S* > S, we obtain that both the set
Dy ={y:yeVY, h(y1,y2) < S} and the set Dy = {y : y € ¥, h(y1,y2) > S} are

non-empty, and ¥ = D; U D,.

On L3, h(y1,n — y1) = y1 + Me(y1)(n — 1) = ¥(1). Since dﬁ(zl) >0 (0<y £0),
Y(0) = Ayn < S, ¢(n) = n > S, there exists exactly one point y} € (0,n) such that
$(u1) = hlyi,n—vi) = 5, and yj = 22T g5 gor0 <y <y, h(yin-m) < S

1-yp(y) D
for yi < y1 < n, h(y1,n — y1) > S. From assumption (II) we know that, there exists §;

such that o(y1) >0 (0 < y1 < 1), (1) =0 (41 < v1), §1 € (0,n].
From the equality

71
0=p(Hh)= /0 ©'(y1)dy + 1,
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1-A A
by assumption (IV) we obtain that —1 > —§, 5 X and 91 > X%
n

™ Noting that

S* — Ayne(yy) ) nl - %So(yf) < Axn
1-Ax X 1-Ax ~ 1-2Ax
we have that for 0 < y; < y*, p(y1) > 0. Therefore, if y € ¥, 0 < y; < yji, then
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h(y1,0) > h(0,0) = Axn > S* > S (0 < y; < n).

y1+Axe(y)(n—n)-S5 a
= such

Ax = 7)e(y) Vi)
that h(y;,y2) = Sand 0 < y2 = Y1(y1) < n—wy1 (0 < y; < y;). Let S; denotes the

curve fulfilled y; = ¥1(y1) (0 < y1 < yj). Because, for 0 < y; < yj, ?—}—l—((—;/—lly—z) < 0;
Y2

for y; < y1 < n, <0, then D; = {y : 0 < y1 €< 95, ¥1(w1) < y2 < n— w1},

.2 .
Dy={y:0<y: < 'l’lz{yl) (0<y1 <yj), 0<y2<n—-y (y; <1 <n)}. By the above
demonstration, we obtain that

For every y; € [0, y;], there exists only one y, =
h(y1,y2)
d

Lemma 2 IfA<1,Ayn< S < S*, then

y1+ de(y) vy + x(n — y1 — y2)], for z: \ € D,
’(yl,yz) =

S for 1 € D,.
Y2
Lemma 3 The curve Sy :y; = ¢1(v1) (0 < y1 < yy) s above the line Sy : y2 = S/y

S
0<y<n-— ;) That 15 to say, ¥1(y1) > S/v (0 <y < 7).

Axn—8S A, . .. Axn—S~ Axrn S~
= —>—— = y;. Obviously, y; > =
Mx-v 7 ’

Mx -7  Mx+(@-2)7 7

Proof First, ¢,(0)

S ] d | | |
> ; So, if we demonstrate ’f’dl (y1)_ >0 (0<y <y) the Lemma is proved. In fact, if
Y1
0 < y; < yj, then
di1(y1) 1 ’
= 1 + A n — — /\
dy Alx = 7)9%(y1) {l xe'(y1)(n — y1) — Axe(y1)le(v)

= [y1 + Axe(y1)(n - y1) - Sle'(n1)}

- A(x - ,:)(Pz(yl) (1 = Axe(y1))e(v1) + (S — i)@' (v1)].

From assumption (IV), we obtain

v
o(y) = /(; Pl(r)dr+1>1-

1-Ax
Axn

Y1
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So, if 0 < y; < yj, then

dy1(y1) 1 1- Ay 1-Ax
e 1- Ax)(1 - — (S —y) =X
dy1 Alx — 7)<P2(y1)[( N Axn S i
1 S 1-Ax
= 1-2x)(1 = —) + y1] > 0.
Alx — )% (y1) (=2 /\xn) d
d
In words, A1 (y1) >0 (0<y <uyp)
dyx
Proposition 1 If S < _dam S*, then system (2) has exactly one stationary
P Ax+(1-2)y 7 y y

point § € Int Y on Y.

Proof For A=1or A <1and S < Ayn, (2) becomes

dy

= = dew)bwz + x(n - v - w)] - S,
Y2

=2 =8~ Ayp.

dt Y2

In order to find out the stationary point of (2), we may solute equations

{ Ap(y)vyz +x(n =y - y2)] - S =0
Y2 ZS/’Y-

S Axn

T A+ (1=
only need to demonstrate that the equation

S .
We find easily, — < < n, So, in order to prove the proposition, we
A
h(y1) = de(y)[S + x(n - S/v-p)]-§=0

has exactly one solution § € (0,n — S/y) on [O,n — S/4]. fA<1and Myn < S < S”. In
D, equation (2) is

W _
t Y1,
Y2
—p = Aoy +x(n -y - )] - 12
: : : _\i p2 _ Axn
The equation has only one stationary point (0, §;) in R*, where §j = ——-———. From
Ax+ (1 A)y

Axn—S _ Axyn-—-S§- Axn
1/) 0) = y* = > =
1(0) = v Ax=7) " AMx-7) Ax+{1-X)y ]
(0,%2) € D;. That is to say, equation (2) has not any stationary point on D;. In Dy,
system (2) is

= §2, we obtain that, (0,9) & Dy,

d

—111 =do(yn) vy + x(n—y1 — y2)] - S,
Y2

22— 8§ — qy,.

7 Y2
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Searching for the stationary point is equal to solving the following system of equations

{ Ap(y1)[vy2 + x(n—y1 —y2)] = S =0,
y2 = S/7.

From Lemma 3, we know that Sy : y2 & S/v (0 < y1 < n—S/v) wholly lies inside D;. So
we only need to demonstrate that the equation h(y;) = Ap(y1)[S+x(n—S/7-y1)]-S =0
has only one solution §; € (0,n — S/v) on [0,n — S/4]. In words, for 0 < S < S*, proving
proposition 1 is equal to proving that the equation h(y;) = 0 has exactly one solution §;
on [0,n — S/q] and §; € (0,n — S/7).

From A(0) = Axn — X (}1 “ Mg A (Alf “ Mg~ §) > 0 and h(n - %) =

S
—[1 - AXp(n— =)]. S < 0, we know, h{y;) = 0 has solutions on [0,n — S/}, and these
9

solutions are inside (0,n — S/v). We assume g, € (0,n — S/v) and h(g1) = 0. So,
from h(y;) = O, we can obtain that Ap(§;)[(S + x(n — S/y —41)] = S > 0. It is thus

clear that ©(g;) > 0. By inspecting, d—ylh(yl) = 20" (y1)[S + x(n — S y1)] — Axe(v)-

dh(y1)
dy
equation h(y;) = 0 on (0,n — S/v) is unique.

We specially have that, lyi=g: < —Axe(y1) < 0. This shows, the solution of the

Proposition 2 If equation (2) has exactly one stationary point § € Int Y on Y, then
S <85

Proof If not, then S > S*. For A= 1and § = S5" = An, (0,n) is the stationary point of
(2) and (0,n) € 3Y, contradiction. For A =1,S > §* or A < 1,§ > S”, in D, equation

(2) is

dyi
dr —Yi1,
% =y + Ap(yn)lrwe + x(n = y1 — w2)] — w2
The equation has a stationary point (0,§;) in Y, where g = L Noting
Ax+{1 =)y

., Axn—-S Axn-S~ Axn
that 0) =y, = < =
2 910) = va AMx =) 7 Ax -7 Ax+({1-A)

ary point (0,§2) € Dy, from g, > 0, we obtain that equation (2) has a stationary point
(0,92) € Y in Y, contradiction.

= %2. We know, the station-

Propsition 3 If S < S, the unique stationary point § of equations (2) is asymptctically
stable.

Proof From the proof of propostion 1, we know that, if § < S™, § is a stationary point
of the following equation

dyy
t

Yo A
T S — vy2 = g2(v1,y2)

FaN
= dp(y) vy + x(n —y1 — v2)] — S = g1(y1, y2),
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and ¢ is an interior point of Y or D,. After inspecting that

d J
6—31191(!71,372) a—yzyl(gl,gz)

0 -y

42 3(91,92)
3(y1,y2)

(171,!72) = )

we make out that A has two real eigenvalues,

At = =y
s} o ' s _
A2 = =gi(§1,92) = A (@S + x(n ~ = — 9] = Ae(@n)x
n 7
Clearly, \; = —v < 0. From assumption (I), we know ¢'(%1) < 0. From the proof of

proposition 1, we know, ©(§) > 0. So, Ay < —Ap'(§1)z < 0. Therefore the stationary
point ¢ 1s an asymptotically stable node.

Proposition 4 If S < S~ for every yo € Y there exists unique solution y(t; yo) of system
(2) such that y|;=0 = yo and y(t) is defined for all t > 0 and y(¢;yo) € Y for all t > 0.

Proof According to assumption (IV), we extend the range of definition of ¢(y1) to
(—6,4+00) (6 > 0, enough small) such that ¢(y;) is monotone non-increasing and con-
tinuously differentiable on (-8, +00). Consequently, the right of system (2) is continuous
and satisfy Lipschitz condition on the bounded domain Q = {y:y € R%, -6 < y1, y2 <
n-+o, y1 +y2 < n+8}. So, for every yo € (1, there exists exactly one solution y(t; yo)
of the system on [0,8(yo)), where [0, 8(yo)) is a maximal interval to which the solution
extends right in the domain Q. Up to now, we only need to prove that for every yo € Y,
B(yo) = +oo and y(t;y0) € Y (t > 0). Noting that ¥ is a bounded and closed set and
Y C 9, on the basis of chapter I of Hale (1969) (theorem 2.1), we only need proving that
for every yo € Y, the solution y(t;y) € Y (0 <t < B(yo)). Now, we carry out the
demonstration by two separate cases.

Case 1 A=1lorA<1land S < Ayn. InY, equation (2) becomes

4 ( Y1 ) _ ( fi(y1, y2) ) _ ( Ao(y)lvyz +x(n— w1 —92)] - S )
dt \ v f2(y1, y2) S =~ vy2 '

d
We might as well regard the equation as one defined in 2. On L;, we have % = Ayy2

d d
+x(n—y2)]-S>Am-S>0 (0<y; <n), and —d!’::—l >0, —dyt—z < 0 at the point (0,n)

d
on Li. On Lo, % =58>0 (0<y1 <n). On L3 the outer normal vector is (1.1), then
(LS (Wlya=n-v, = Ae(m1)y(n—y1) —v(n—y1) = —(1-Ap(y1))7(n-y1) <0, 0<y1 < n

and (L1)f(y)|no) = 0, (1.1)f(y)lon) < 0. In words, on dY, except point (0,n) and
(n,0), for every other point yg € Y, we have §(yo) > O such that the solution y(t;yo) €
IntY (0<t<6(yo)),y(t;v0) € QY (~6(yo) <t <0). Using the continuous dependence
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of the solution on the initial value, we can prove that for points (0,n) and (n,0), there
exists § > O as other points on Y. So, from the uniqueness of the orbit of system (2), we
obtain that, for every yo € Y, y(t;yo) €Y (0 <t < B(wo))-

AMx-7v) 1 9n
Ax+(1-A)y'2x -

‘ 1
Case 2 A <1, Ayn < S < S”. If letting 6§ < min{iz\xn }, we can

extend the cufve S; to the S;:

v2 =¥%1(y1) (-6 <wy1 <y;"), wherey] <y, <9,
and
_wntie(y)x(n-—w) - S
Ax = Meln)
putting Q1 = {(y1,¥2) : ¥1{y1) <ya <n+b-y1 (-6 <y <y")}, Q2= {(y1,42) : -6 <

v2<¥1(y1) (-6 <<y} -§<yz<n+b-y1 (yi" < y1 < n+6)}, we have that
Q=0UQs, D1 =0110Y, Dy =0:nY. In Q) system (2) becomes that

¥1(v1)

dyr _ _
¢ Y1
% =y1 + Ae(y) vy + x(n — v1 — v2)] — y2;

In 2, system (2) becomes that

dy ‘

—tl = Ap(y1)[vyz + x(n = v1 —w2)] - S,
Y2

L~

dt TY2

d
On L3, we have % =58>0 (0<y1 <n);O0n Lz, (L.1)f(y) = = (1 - Ap(y1)v(n—y1) <

0,0<y; <n. On Ll,if0§y2<y;:—i‘z(n_'s;,wehave
X =1
d
%:Axn—S—/\(x—'y)yg>0.

Up to now, except for one segment y; =0 (y; < y2 < n) and the point (n,0), for every
other yo € Y, there always exists §(yo) > O such that y(t;y0) € Int Y (0 < t < §(yo)),
y(t;y0) € Q/Y (—6(yo) < t < 0). For the point (n,0), by using the continuous dependence
of the solution on the initial value we can demonstrate that the above-mentiocned 6§ > 0
exists exactly. We point out that y; =0 (y; < y2 < n+§) is the orbit of system (2), and
its direction is from (0,n + §) to (0,y}). For every y3 < y9 < n+§, the solution of system

(2) fulfilling that y|;=o = ( :0 ) is y1{t) = 0, y2(t) = (¥9 - yg)e—[’\"+(l"\)"}‘ + g for
2

1 v2 — 2 Axn

0<t<T([HI) = In 3 —, where g = ——F————
(v2) AX+ A=Ay oy Ax + (1- A)y

starting from every point (0,y2) on y; =0 (y; < y2 < n + §) all go to the point (0,y3).

. Up to now orbits
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Next, we answer how orbits do after passing the point (0,y;). Let us inspect the curve
Szt Ap(y1)[vy2 + x(n — y1 — 2)] — S =0,0 < y1 < 1, where § = (1, 82) is a stationary
solution of (2) in Y. Clearly o(§1) > 0. So, ¢(y1) > 0 (0 < y; < #1). Therefore,

A n— -8 . ‘
Ssiy2 = ”(j’;)(’;f o f‘fl) £ ¥2(y1), 0 < 1 < §1. We find easily, $2(0) = 1(0) = 43,
Y2(n1) < ¥1(yr1) 20 <y < 41). So, S3 C Dy, 0on Sz :y2 = Pa(yn), 0 < w1 < 91,

d .
we have “JL — 0, 2 _ s ~vy2 < 0 (This inequality can be obtained from the proof of

proposition (1)). By using the continuity of the solution of system (2) to initial value, we
0 . 0 ‘

can prove that y(t; v )e D (0<t< ﬂ(( v ))), where D* = {(y1,¥2) : S/v <
2 2

y2 < ¥2(y1) (0 < y1 < §1) (noting that yo = S/4, 0 < y; < §; is an orbit). In words, from
the uniqueness of the orbit we obtain that for every yo € Y, y(t : yo) € Y (0 <t < B(yo))-

Proposition 5 If S < S*, for every yo € Y, tlim y(t;yo) = §.
— 00

Proof First, we prove system (2) has not any closed orbit in Y. Otherwise, (2). has a
closed orbit I' C Y. From Chapter IV of Sansone and Conti (1964) (Theorem 12), we know
that, there must is stationary point in the interior of I'. From propsition 1 we have that
there is only one stationary point § in Y. It is clear that § lies in interior of 5. Clearly,
y2 =92 = S/y (0 < y1 < #1) is an orbit of (2). Then the orbit y2 = g, (0 < y1 < #1)
intersects the closed orbit of (2). It contradicts the uniqueness of the orbit. For every
Yo € Y, we know from roposition 4 that there exists exactly one solution y(¢; yo) of system
(2) and y(t;y0) € Y for all t > 0. Since Y is a bounded and closed set, we have that
w(yo) € Y, where w(yo) is the w limit set of the positive semiorbit y(t;yo) (¢t > 0). Noting
that there isn’t any closed orbit in Y, from chapter II of Hale (1969) (§1, theorem 1.3),
we obtain that w(yo) must include the stationary point. By proposition 1, there exists
exactly one stationary point § in Y. So, § € w(yo). If w(yo) includes a ordinary point y*
except the stationary point, then by the above—mentioned theorem of Hale (1969), we
know that there exist t_lér+noo y(t;y*) and t_ljr_noo y(t;¥y") and both of them are stationary

points in w(yo). So, t liin y(t;yH)= t lim y(t;y") = §. From proposition 2 we know that
—+o00 ——00

g is a stable node. It contradicts - lim y(¢t;y*) = §. Clearly, w(yo) only consists of the

stationary point. That is to say w(;/o) z {y}. Now we prove that tlir& y(t;yo) = §. If not,
there exists eg > 0,t, 1 oo (n — o00) such that |y(t,;y0) — §| > €o. Because § is a w
limit point of postive semiorbit y(¢;y0) (¢ > 0), we have that ¢, — oo (n — o0) such
that |y(t;,; yo) — y| < €0, and t}, > t,. From the continuity of |y(t;yo) — §| we know that
there is t, < t; < t] such that |y(t};y0) — §| = €0. Then the sequsnce {y(t};yo)} has
convergent subsequences. We might as well assume the sequence itself converges to §'. So
we have t* — oo (n — oo) such that limy(t;yo) = §. Clearly, ¥ € w(yo). We note
7' - g = nli_’n(}o ly(t,; yo) — §| = €0. We have §' # . It contradicts w(yo) = {§}-
The theorem of Chapter I follows from proposition 1-—5.
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