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Abstract In this paper we prove that there exists a unique local classical solution for
the multidimension one phase Stefan problem with Kinetic condition.
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1. Introduc:

We consider a material which may be in either of two phases, e.g., solid and liquid,
occupying a region 2 € R™. Let u denote the temperature and for each time t > 0, denote
by I'; the hypersurface which separate the solid region 2} and the liquid region Q2. The
classical two phase Stefan problem is to find a pair (u,T) satisfying

ul -k Au =0 inQ =u (1=1,2), (1.1)
1 2

kla_”_ _ 2ol LV, on ' = U, Ty, (1.2)
on on

ul=u=0 onT (13)

with suitable initial and boundary conditions, where u = u’ in Q' k* are the thermal
diffusivity coefficients, L is the latent heat, n the normal to 'y, and V,, is the normal
velocity of the hypersurface T';.

This problem has been extensively studied as a model for phase transitions, see, for in-
stance, {1]. However, the physical situation is generally more complex than that described
by the classical Stefan formulation. A prevailing alternative formulation (see [2] and its
references) which attempts to recover these effects is obtained by replacing the condition
of u being equal to the equilibrium melting temperature on the interface, by the “modified
Gibbs- Thomsono relation”

u=—-ok-pV, on T. (1.4)

Here k denotes the sum of the principal curvatures at a point on the interface, a and A
are non-negative constants.
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When o > 0and 8 > 0, problem (1.1),(1.2), (1.4) have an unique local classical solution
([3)). When 8 = 0, problem (1.1), (1.2), (1.4) have global weak solution ([4]), and local
classical solution ([5]). For these two cases the condition (1.4) is an equation of second
order. But, for ¢ = 0, no result about the existence of the classical solution to problem
(1.1), (1.2), (1.4) is known for the multi-dimension case, since the condition (1.4) at this
time becomes an equation of first order on a manifold, which causes new difficulty for the
regularity to the space variable of the free boundary. This paper is devoted to solve this
problem for one phase. We establish that there exists an unique local classical solution,
which provide a parabolic analog of the result in [6]. Precisely we consider following free
boundary problem:

Find a function u = u(z, y,t) and a surface I' : y = g(z,t) (z,t) € R! x [0,T] satisfy

us — Au=0 In DT = UIE[O,T]Qh (15)
u(z,0,t) = b(z,t) on 7= R!x [0,T], (1.6)
u(z,y,0) = uo(z,y) on Iy, (1.7)
?—u—{v—u:O ODFELHF;, (18)
on

u=V, on [, (1.9)

and ¢ satisfies the initial condition
9(z,0) = go(z) >0, Yz e R (1.10)

Here 0 = {(z,9)]z € R, 0 <y < g(z,0}, Tt = {(z,9(5,0)lz € R}, n is the out-
ward normal to T, for each t € [0,T] fixed, and V,, is the velocity of the free boundary

_ gt
" 1+g2
We shall assume:
ab
ug(z,0) = b(z,0), E(I,O) — Aug(z,0) =0 Vze R, (1.11)
%+u0:0 on FO, (112)
dn
where n is the outward normal to T'p, (1.11) and (1.12) are the compatibility condition.
UO(I,y) € Cz-f-a(ﬁo), ”uOHCQ‘*’a(f—In) S cy, (113)
go(I) >co >0, “gOHC2+a(21) <K, (1.14)

b(I,t) e CZ+a,1+%(T), !]b|'02+“~1+% < ¢y, (115)

(r)

where ¢p and K are given constants, c¢; is a given constant independent of 7. Our main
result is the following:

Theorem  Under the assumption (1.11)—(1.15), problem (1.5)— (1.10) has one and
only one local classical solution.
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2. Existence
Define the class of functions

c '
Bumum, = {9(z,t), z€ R, 0<t<T; g(z,t) > —0) ||9”cff"~“(,) < 8K,

llgellLee(r) < M, [gtica,%(r) < M, ¢(z,0) = go(z)},

where M and M, are positive constants to be determined.
For any g € B, define T' : y = g(z,t)) ((z,t) € 7) and let u be the bounded
solution of (1.5)—(1.8). By the maximum principle

llullze(py) < e1- (2.1)
Choose M = /1 + 64K2c; + K. By the Krylov estimates

”uHcﬂ‘%—(Dr) S Ca. (22)

Here c; depends on K,c;, M, T, but not on the lower bound of T. So ¢z = c2(K,¢1). Now
choose M; = 22 Kc,. By Schauder estimates (see [8], Th. 11.6; or [9], Th. IV. 5.3)

”u]|c2+a,l+%(ﬁ7.) Se3= 03(K)CI’M: M, T). (23)

It is easy to see that c¢3 is independent of the lower bound of T. So c3 depends only on
K, C1.
Let 5 be mollifiers in z and set Vs(z,t) = (ps*v(-,t))(z) where v(z,t) = u(z, g(z,t),t).
Then
IVs(-s O)llcataryy < 3y Vsllzm() < ety Vsllpag p,y < 2 (2.4)

Introduce gs(z) = s * go(z), we have

llgsllca+a(rry < K. (2.5)

For any small € > 0, let §(z,t) be the bounded solution of

57: =V 1+ ﬁV&(ﬂ:,t) + Eg:l:’.’:; (26)
§(z,0) = g5(=). (2.7)

By comparison [10, pp.52]

g(z,t) < eit + maxgs(z), §(z,t) > —cit + inf gs(z), (2.8)
so that c
i(=t) > 2, Nl < 2K, (2.9)

T is small enough (depending only on i, K).
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The following arguments are the almost same as in [6]. In order to render the paper as
self-contained as possible we will reproduce certain calculations already presented in [6].
Differentiate (2.6) in z to obtain

a Vs a? .
Li, = —§: — ——=0r — Vsz\/1+ G — e=—=3,. 2.10
gz atg mgz 5,z +gz eaIng ( )

The function w = ct + K satisfies Lw = ¢ — Vs;vV1+w? > 0if ¢ > ¢ and T small
depending only on K,¢;. By comparison with g, we get

§: < w < 2K, (2.11)

if T is small enough, and similarly
gz > —2K. (2.12)

Next differentiating (2.6) in z twice and using (2.9), (2.1), (2.13), we obtain by comparison,
as before,
§zz] < ct + K < 2K, (2.13)

where ¢ = ¢(K,¢;) and T is small depending only on K,¢;.
Finally, from (2.6) )
GtlLo(r) S M =V1+ 4K + K, (2.14)

if € < 1/2 and T is small. Also from {2.2), (2.4).

Vs is Holder continuous in (z,1), [Vl a2 < .

(Dr)
Next we observe that the problem

gt = V14 ¢2Vs(z,t), (2.16)
9(z,0) = g5(z) (2.17)

has at most one solution. In fact, this follows by estimating the difference of two solutions,
making use of the Lipschitz continuity of V;(z,t) in z and its continuity in ¢.
From the above observations and the estimates (2.9), (2.11), (2.12), (2.13), (2.14) it
follows that the family § = §. converges to a (unique) solution g* of (2.16), (2.17) as ¢ — 0.
By using (2.4), (2.13), (2.16) we get

||gt*HL°°(T) S M) [g:]ca‘%(f) S Ml-

Now differentiating (2.16) formally twice in z to obtain

a . V, * . * ZV ) .
1z — _B—gIg — (gzz) ) 9292z V6,z+ /1+g;2V5,zz- (2.18)

_+_
*2
ot /1_+_g;2 T (1+gz )3/2 /1+g;2

To justify this differentiation note that by differentiating (2.10) successively in z and
comprising with function of the form ¢t + ¢ we can estimate the derivatives §zzz, Gzz2z,
etc., as we have done in {2.13). The constants depend on & but not on e. Hence by
differentiating (2.6) twice in z and then letting € — 0, equation (2.18) follows.
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Next introduce the characteristics

a§

%= (W), Ez0)=2 (219)

d¢

1 . . .
and note that — < — < 2 if T is small. Writing (2.18) in integrated form along charac-

teristics we can concl:flde that
|g;z(€(xl7t)’t) - Ig;z(g(xmt))t)l < lg5.21(11) - 95,12(12”

+ [ 1Asleza(€(e1,0),9) - o2u(€(a, ), )] + A,

where |A;| <cx (7 =1,2), |Az| < ck|&(z1,s) — £(z2,5)|*, ck independent of §.

It is easily follows from Gronwall inequality that (g} ]Jce < 2K if T is small.

Consider the mapping W defined by ¢ —+ Wg = g*. We have proved that W maps
B M, into itself provided T is sufficiently small (depending only on K, ¢;, but not on §).

If we provide Baag, with the uniform topology, then Basas, is compact and convex
subset. From the uniqueness of solution to (2.16), (2.17) and compactness if follows that
W is continuous. By Schauder fixed-point theorem, W has a fixed point g;. Taking 6 — 0
through an appropriate subsequence we obtain a limiting function g, which together with
the corresponding u, provide a local classical solution to (1.5)—(1.10).

3. Uniqueness
In 2. we have proved the existence of solutions (u, g) such that
g € CHIF3 (7). (3.1)

Now assume that for some T > 0, (u,g), (&,§) are two solutions of (1.5)—(1.10) satisfying
(3.1). We shall prove u = @ and g = §.
By assumption, Hgllczﬂ,wg(f)H§||Cz+a,1+%(;) < ¢ and therefore by Schauder’s esti-

mates
llullc2+a-1+%(DT) <eg¢ ||&HCQ+0J+%(5T) <ec. (3'2)
Put
V(t) = sup|g(z,t) — §(=,t)] (¢t small), (3.3)
and denote G; = {(z,y)|0 < y < g(z,t) —V(t)} and S; = {y = g(=z,t) — V(t)}. Then
—9z, 1)

980Gy = {y = 0} U S; and the outward normal along S; is n = Set

Ju du
Ji = (% + u)ly=g(z.t)-v(t) — (ﬁ + 1) |y=g(z,1)>
du  _ ou .
Jo = (G- Wly=gzn)-vi — (55 + D=3
Then, by (3.2)
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IV1llearry < cV (¢), (3.4)

IV2llce(rry < eV (t) +cllg(-,t) = G(, )llca(rry- (3.5)
Introducing the normal to T'; = {y = §(z,t)}, i = _(_—_ﬁz_,ll We also have
du Jdu ~
12 = 25, semviallezcen < lla=Ct) = 3 Dllcs e (9)

From (1.8) for both u and @ and (3.4)—(3.6) it easily follows

d(u-—u . -
H(% + (v = @))y=j(z,0)-v()llcg(rr) < cllg = Gllcita(ry)(t) (3.7)

and then by maximum principle

lu = €l|Leo(UogeceyGe) < € max gz — Gzllcrta(rr)(t)- (3.8)

o

So by parabolic C1**1* % estimates [17, Th 6.27],

—u O o e n < - ] o . 3.9
[|u uIICz+a.l+Lg_(UOS‘Smc‘) < Colsné’gollg dllci+a(r)(t) (3.9)

Here c is independent of the lower bound of ¢3. Next, differentiating in z the free boundary
condition g; = \/1 + g2u(z,g,t) we get

9z = H(z,t)9z2 + K(z,1), (3.10)

where

]

H(I,t) —gz—(u(x)g(x!t))t)7

V1+g2
K(z,t) = /14 g%(uz(z,9(z,t),t) + uy(z,g9(z,t),t)9z).

A similar formula holds for g.
Using (3.2) and (3.9) we can estimate

IK = Klloz(rn)(t) + [1H = Hizzllopra(rn(t) < c ax [lg(, ) = 4(, s)llcpracrs)-

Consequently the function ¢* = g — g satisfies

lo% — H(z Dazallcz (1) < ¢ max [lo*lcragen(s) (3.11)
| H (- t)llcsre(rry < e (3.12)
We introduce the characteristics
d
2= _H(ED), &0 == (3.13)
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By (3.12) ”
< <2 for 0<t<to (3.14)

N | -

if tg is small enough.
Integrating (3.11) along characteristics we obtain

lozlize=(t) < et max llg™llcy+a(s). (3.15)
Using (3.14) and proceeding as in 2. we can also get the estimate
lozlicy+a(t) < et max llg"licr+a(s). (3.16)
From (3.15), (3.16) and ¢; = /1 + g2u(z,g,t) it follows that

* o < * o -
97 llcs+a(t) < et max [lg"llcy+a(s)
So g(z,t) = g(z,t) for 0 < t < tg, if to is sufficiently small, and then also u(z,y,t) =
t(z,y,t) for 0 <t < ty. Now we can proceed step-by-step to prove that g = g, u = u for
all0<t<T.

Remark The method of this paper can be used to prove the same result for the multi-
dimension problem case.
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