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On Pointwise Ergodicity of Mappings in L? Space
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Abstrict In this note we prove several theorems on pointwise ergodicity of mappings
defined in L”{1 < p < oo) and generalize the Yosida-Kakutani theorem on uniform er-
godicity of quasi-compact operators.

Keywords linear operator, non-linear operator, pole of an operator, pointwise ergodic-
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1. Introduction

Let E be a non-zero complex Banach space, and F, a closed convex subset of E. Let
A denote a mapping of F into itself. Write

ln—l .
An=—-S A n=1,2---. 1
n‘_:zo n (1)

If for any element z € F, the sequence {A,z} converges weakly or strongly, A is called to
be weakly or strongly ergodic respectively; In case E = LP(S§, £, u) and the limit
lim Anz a.e. (2)
n— oo
exists for each element z in F, A is said to be pointwise ergodic (p.e.) or to have pointwise
ergodic property (p.e.p.).We are mainly concerned in this note with conditions under which
a linear contraction A, i.e. ||A|| < 1, defined on L? is p.e.({1], [3], [4]). So far as we know
sufficient conditions have been obtained as follows: Suppose A is a linear contraction on
LP. (a) If A is positive, i.e., Az > 0 for z € L with z > 0, and 1 < p < oo, then A
is p.e.; if p =1 or p = oo, the answer is negative. (b) If A is a linear contraciion for
every p with 1 < p < 0o, p# 2, A has p.e.p.. (c) If A is convertibly norm-preserving and
l<p<oo,p#2 Aisp.e.;if p=2, the answer is negative. Therefore the problem is
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still open for general linear contractions. As for nonlinear contractions, it is more difficult
and challeunge.

In this note some interesting results are obtained. We give a sufficient condition for a
nonlinear mapping defined in L” to be p.e. and then prove that weli known contractions
of several type have p.e.p..

For simplicity, B(FE) always denotes the Banach algebra of all the hounded linear
operators on Banach space E. For A € B(E), o(A) represents the spectrum of A, v(A),
the spectral radius of A. A complex Ag is called a pole of A if Ay is both an isnlated point
of 0(A) and a pole of (A] — A)~!. Simple poles refer to ones with order one. LP(S,%, u)
space is often abbreviated as L?.

2. Theorems on Pointwise ergodicity for Mappings

Lemma 1 Let F be a closed convex subset of Banach space E and A, a mapping of F
into tself. If o € F satisfies

oo

1
Z P 1||Ak1:o — AFzg|| < oo, (3)

then (a) {Anzo} converges strongly; (b) In the case of E = LP(1 < p < o0), {Anzo}
converges a.e. as well.

. 1
Proof (a) Since Apzp ~ Ant120 = ?(Anzo — A"z), n=1,2,---, we have
n
n n 1
o — An+110 = Z(AkIO - A)H.lzo) = Z —(Ak:l:o - Ak:l:o). (4)

The desired conclusion follows from (3) and (4).
(b) Case of p = 1. Now Condition (3) takes the form

oo

kZ::l FIILT/S [Arzo(s) — A*zo(s)ldu(s) < oo.

From the monotone converging theorem, we have

/ Z Py llAk:z:o 8) — AFzo(s)|du < oo,

and hence Z (Agzo(s) - Akxo(s)) converges a.e. to an element of L}, say, y*(s).

k+1
Then (4) 1mp11es {Anzo(s)} tends a.e. to zo(s) — y*(s).

Case of 1 < p < 0o. Let =+ — = 1. If u(§) < oo, from the Hélder inequality
p 9
1
[, leldu < izl (u($))3, Vo 12
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and (3), we infer that

oo o,

1
Z k+ 1/ |Agzo — Akzo|dp < (u($)) Z P 1||Ak:co — Ak Zollp < oo.

Hence, it can be shown in a similar way that {A,zo(s)} converges a e. and <o does in case
S is of o-finite measure. When § is of non-o-finite measure, there exists a measurable set
So of o-finite measure such that every A,z vaniches on the complement of Sg. Inplacing
$ by So and repeating the argument above, one can see that {A,,zo} converges a.e. on Sy
and hence on S.

Case of p = +00. Obviuos. O

Theorem 2 Let F be a closed convexr subset of LP with 1 < p < oc, and let A be a
mapping of F into itself satisfying one of the following conditions: (a) There ezists a
positive integer m such that A™ 1is a proper contraction. (b) There exists a constant h with
0 < h < 1 such that for each pair of z,y in F,

|4z — Ay[| < Hmax{||z — Az|,ly — Ayl], |z - ylI}.

Then A is pointwise ergodic.

Proof Ommitted.
3. Theorems on Pointwise Ergodicity for Bounded Linear Operators

We consider in this section bounded linear operators on a complex Banach space E.
We say that A € B(E) is uniformly ergodic, if {An} converges in the uniform operator
topology.

We first note that it is easily seen, by a similar a.rgument used as in the proof ol Lemma
oo

1, that if A € B(FE) satisfies the condition: Z —||A — A"|| < oo, then A has uniformly
ergodic property. This fact will be applied i 1n the proof of Lemma 3 below.

Lemma 3 If the spectral radius of A in B(E) is strictly less than 1, A is uniformly
ergodic. Moreover, in the case of E = LP with 1 < p < oo, A 1s p.e. as well.

Proof We obtain from elementary properties of bounded linear operators that both

o0
Z —”A,,|| < oo and Z —HA"H < oo hold and so does Z —||A — A"]| < 0o. Thus A
n_l n= 1

is uniformly ergodic by the remark before this lemma. Further, take a positive number
6 and a positive integer m so that y(A) < § < 1 and ||A™|| < 6™. Therefore A satisfies
Condition (a) in Theorem 2, and hence A has p.e.p.. O

Lemma 4 Suppose A and B in B(E) are commautative, i.e., AB = BA. If both A and B
are strongly (or uniformly) ergodic, so 1s A+ B. Moreover, in the case of E = L*, if both
A and B have p.e.p., so does A+ B.

Proof Obvious. I
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Theorem 5 Let A € B(E). Suppose the spectrum a( ) of A consists of two disjoint

sets o1 and g3 such that o1 C {A: |A| < 8} with§ < 1 and 02 C {A : |A\| = 1}. Put

1
P =— (AT — A)"YdX and P, =1 — P,. Then
27t J)a|=6
(a) A has uniformly or strongly ergodic property iff AP, does.

(b) In case E = LP with 1 < p < o0, it s alsc true that A is p.e. iff AP 1is.

Proof According to the spectral theory of bounded linear operators on a complex Banach
space we see that A = AP} + AP; and that the spectrum of A;, the restriction of A to
E;=P,Eiso;(i =1,2). Since AP,- AP, = AP,- AP, the desired conclusions follow from
Lemmas 3 and 4 above. O

Lemma 6 Let A € B(E). Each pole of A on the unit circle is simple if one of th following
statements holds:
(a) A is weakly ergodic.
() {——— converges to zero weakly.
n
(c) A is p.e. in the case of E = LP with 1 < p < oo.

Proof (a) Let A be a pole of A with [A] = 1. Assume that X is not a simple pole. Then
there be two non-zero elements z and y in E such that both (A—AI)z = yand (A-AI)y= 0
hold([1}, p.709). It follows by induction that A"z = A"z +nA"" 'y, n =1,2,---, and hence

1 1n.—l
Anz— —z ==Y Az =anz+ fay, (A)
n n

where a,, = Z \oB, = Z kA¥~1  Observe that {an} is convergent, while {8}

is not.On the other hand, for 43 E E* with ¢(y) # 0, it follows from (a) that {¢(A.r)}
converges weakly. Then we see from (A) that {8,} should converge also, a contraduction.
(c) It can be shown in a similar way as above.
(b) This is nothing, but Lemma 1 in (1}, p.709). O

Lemma 7 Let A be an element in B(E) such that a(A) C {)\ : [A| = 1} and each X in
o(A) 1s a pole of A. Then the following statements are equivalent:

(a) A is uniformly ergodic.

(b) A 1s weakly ergodic.

(c) converges weakly to zero.

(d) each pole of A 1s simple.
(e) In the case of E = LP with 1 < p < oo, A isp.e.

Proof By Lemma 6 above we see that (a) = (b) = (d), (c) = (d), and (e) = (d) are all
valid. We have only to show that (d) => (a) = (c) and (d) = (e) are also true.

(d) = (a). Since each pole of A is an isolated point of o(A), o(A) consists of finite
point, say, a(A) = {A1,22,---,Am}, and each JX; is a simple pole. Therefore there exist
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m
m bounded projections Py, P;,- -+, Py, such that ZP, =1I, P;-P;=0, t# 7 and each

i=1
E; = P,E is the eigenspace of A corresponding to X;(see [1],V I 1.3). Then for any z in E,
we have

m
1 :
Apz = Z - Aj*Pjz. (5)

If 1 € 0(A) and let A\; = 1, (5) implies

MZ 2
|Anz — Prz|| < ||1‘||7 Z Ty
i=2 J
where M = maxs<j<m ||P;||. Thus {An} converges uniformly to P,. If 1 &€ o(A), it is
obvious that {A,} converges uniformly to zero. Therefore (d) => (a) holds.
(d) = (e). It is shown in a similar way.
(a) = (c). See [1](Corollary 3, p.662). O
Theorem 8 Let A be a bounded linear operator on E such that each spectral point of A
n
on the unit circle 1s a pole and {——} converges weakly to zero. Then
n
(a) A is uniformly ergodic.
(b) In the case of E = LP with 1 < p < oo, A 1s p.e. as well.

n

Proof Since g% converges weakly to zero, we infer, by lemma 6 in ({1],p.709), that
the spectral radius of A is not greater than 1. An application of Lemma 6 above shows
that A has only finite number of spectral points on the unit circle, and all such spectral
points are simple poles. The desired conclusions follow from Lemma 7 and Theorem 5
above. O

Let A € B(E). If there is a compact operator Q in B8(E) and a positive integer m so
that ||A™ — Q|| < 1, A is called to be quasi-compact. It is a useful type of operators. Each
of compact operators is, of course, quasi-compact.

n

. A
Corollary Let A be a quasi-compact operator on E such that {——} converges weakly
n

to zero, then A is u.e.. In the case of E = LP with 1 < p < oo, A is p.e. as well. In
particular, if A is a compact contraction, the same conclusions hold.

Proof By Theorem 3 in ([1], p.711), we see that A satisfies the hypothesis of Theorem 8

11
above and hence all the desired results hold. O

Remark The first assertion of this Corollary is nothing but the Yosida-Kakutani theorem
on uniform ergodicity of quasi-compact operators ([6]; [1], p.711),which is a special case
of Theorem 8,(a). In essense, it is in the Yosida-Kakutani theorem asked for A that each
eigenspace of A corresponding to an eigenvalue on the unit circle is of finite dimension,
while in Theorem 8 above that restriction is dispensed with.
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