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That Share two Values*
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Abstract In this paper, we mainly discus the unicity problems of meromorphic functions
that share two values. Which generalize and improve some results of M. Ozawa, Yi
Hongxun, C.C. Yang etc.
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1. Introduction and main results

In this paper, we use the usual notation of Nevanlinna theorey (see [1]). Let E denote
a positive real number set with finite linear measure. The notation S(r, f) denote any
quantity satisfying S(r, f) = o{T(r,f)}, (r — oo, r & E), which not necessarily be the
same at each occurrence. If two meromorphic functions f and .g have the same a-points
with the same multiplicities, we denote it by E(a, f) = E(a,g).

In 1976, M. Ozawa proved the following theorem:

Theorem A ([2]) Let f and g be two entire functions, such that E(1, f) = E(1,9). If
6(0,f) > 0 and O is a lacunary for g, then f =g or f-g = 1.
In 1990, Yi Hongxun obtained the following result:
Theorem B ([3]) Let f and g be two meromorphic functions, such that E(1, f) = E(1,9),
1 1 —
E(oco, f) = E(co,g). If N(r, 7) + N(r,=)+2N(r,f) < (u+0(1))T(r) (r & E), where

T(r) = max{T(r,f),T(r,9)}, #<1. Then f=gorf-g=1.
In this paper, we prove the following theorem, which include theorem A and theorem
B.

Theorem 1 Let f and g be two nonconstant meromorphic functions, u and A he two
meromorpkic functions, satisfying

T(r,u) = o{T(r,f)}, T(r,A) =o{T(r,9)},
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Assume that E(oo, f) = E(o0,9), E(p, f) = E(p,g), where ¢ is a meromorphic function,
satisfying T(r,p) = o{min[T(r, f),T(r,g)]} and p Z p,0 Z X. If

1 1 _ ‘
N(rg=) + N =) + 2N (. /) < (1= &)T(7) (0 > 0),
where T(r) = max{T(r, f),T(r,9)}. Then
f-p_9-2
p—p p-X

or
(f-u)-lg-N)=(p-n)(p-2)
In {4], C.C. Yang has asked:
What can be said about the relationship between two entire functions f and g if
E(0,f) = E(0,9), E(1,f')= E(1,¢')?
In 1991, Yi Hongxun and C.C. Yang proved following result:

Theorem C ([5]) Let f and g be two nonconstant entire functions, If §(0, f) +6(0,¢) > 1
and E(1, f') = E(1,9'), then f =g or f'-¢' = 1.

In this paper, we generalize and improve the result of Theorem C, and obtain the
following theorem:

Theorem 2 Let f and g be two nonconstant meromorphic functions, and
E(oo,f) = E(oo,g), E(a’f') = E(b,gl))

where a,b are nonzero constants. If there exist finite comples number ¢,d such that

N(r =)+ N =) + 3, /) < (L= 20)T() (0 > 0),

where T (r) = max{T(r, f),T(r,g9)}. Then f ; °=1 ; d, or f'-g' = ab.

2. Some lemmas

Lemma 1 ([6]) Let f; and f; be two nonconstant meromorphic functions, a; # 0 and
oy % 0 be two meromorphic functions, salisfying

T(r,a5) = o{T(r)}, (1=1,2),
where T(r) = max{T(r, f1),T(r, f2)}. H a1 f1 + azf2 = 1, then

1

T(r, f1) < N(r, 2

)+ N(r, %) +N(r, f1) +o{T()} (r ¢ E).

— 500 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Lemma 2 ([7]) Let f1, f2, -, fn be linearly independent meromorphic functions, satisfy-

ing ij = 1. Then

i=1

T(r,f;) < f: N(r, %)-{-N(r, fi)+N(r, D)—i N(r, %)+0{T(r)} (r¢ E; 5=1,2,---,n),
i=1 ¥ i=1 '

where T(r) = max{T(r, f)}.
h fao o fn

p=| A ATk
fl(n—l) fén_l) '(ln—l)

Lemma 3 ([3]) Let fi, f2, f3 be three nonconstant meromorphic functions, satisfying
n

f[i=1 Let gy = ——f3 1 ——fl. If f1,fa2, fs are linearly independent, then
j
j:l

92 = —,93 =
f2’ f2’ f2
g1,92,93 are linearly independent.

Lemma 4 Let f be nonconstant meromorphic function, then for arbitrary finite complezx

number ¢ we have N(r, %) <T(r,f') + N(r, f_iz) =T(r,f) +o{T(r,f)} (r&E).

Proof For arbitrary finite complex number ¢, we note that

L) <m(r, L

f—-c¢ f—-e¢
by the first fundamental theorem (see [1]) we have from (1)

m(r, )+ m(r, %) = m(r, %) +5(r, 1), (1)

T(r, 1) = N(r,——) < T(r, ') = N(r, %) +5(r, f).

f-ec' 7

Thus N(r, —;—,) <T(r,f")+ N(r, ) —T(r,f) + S(r, f) which proves Lemma 4.

1
[-c¢
3. The proof of theorems

The proof of Theorem 1 In fact, from E(oo, f) = E(co,g) and E(p, f) = E(p,g) we
have

[20_ ®)
9—-¥
where a is an entire function. From (2) we deduce that
f—pn=(9-2)e" = (p—ANe” + (p - p). (3)

We dividing our argument into two cases:
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Case 1 ¢“ is identically equal to constant, suppose that e* = k.
(1.1) k=1,from (2) we get f =g. Thus f —p=¢g — A+ (A — ). If A # pu, then

f-u g-2A

il e ®)
by Lemma 1 we have
T(r.f) < T(r,f-u)+o{T(rf)}
1 1 —

< N(r,f_p)-{—N(r,m-)+N(r,f)+o{T(r)}, (7¢E)’ (5)

where T(r) = max{T(r, f},T(r,9)}. In the same manner, we get

1 1 —

TUJ)<Nh7j7T+NUw_AY+N0J¥+dHﬂL (r ¢ E). (6)

Combining that (5) and (6) we deduce that

. 1 1 —
T(r) < N(r, = #) + N(",g —) TN f) +o{T(r)} < (1 - e0)T(r), (r ¢ E),
- - A
this is a contradiction. Hence A = u, thus f-» =3_ 2
w—ﬂ p—A
Y- p -p _p-p .
1.2) k#1, k= ——. From (2) we have = , l.e.,
(12) k# Y (2) P
f-n_g-2A
p—p p—A
©—p
(1.3) k#1and k# P From (3) we have
w—
- k
It L=, Y
g—1 o)

where z; = (p — u) — k(¢ — A). It is easy to deduce that a contradiction by Lemma 1.

Case 2 e” is not identically equal to constant and e* # PR Let fi= I—;li,
\ \ p—A p-p
aP— a¥
fa=ce m, fa=—e —80_——_#’ Ti(r) = lfél?sxa{T(", fi)} Then from (3)
3
d fi=1 (8)

g2 e — M a9 A
n = ) 2 3 3 = —¢€
p-—A -2 p—p
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are linearly independent. By Lemma 2 we have

1 1 _
T(r,f) < N(r’]'—_#)+N(r’g—,\)+N("f)+N("D)
3
- Y N f) +o{Tu(r)}, (r ¢ E), (9)
i=1
where
i f2 /fs
D=\fi f» f3
P
From (8)
h 21 .
p=|s 7 oo|=| B 5|
" " 1 2

0]
1 Ja
hence N(r, D) < N(r,f) + 2N(r, f) + 0{T1(r)}. Noting that E(oo, f) = E(o0,g), so

N(r,f)+ N(r,D) - Z N(r,f;) < 2N(r, f) + o{Ta(r)}.

Relative to (9) we obtain

1 1 -
T(r,f) < N(r, f_—#) + N(r, o 3) + 2N(r, ) + o{Tu(r)}- (10)
In the same manner, we have
1 1 —
T(r,g9) < N(r,?—_—“)+N(r,g_—,\)+2N(r,f)+o{T2(r)}, (11)

where Ty(r) = lrgaé(s{T(r,gj)}.
<5<
Combining (10) and (11) we deduce that T(r) < (1 — &) - T(r), (r € E), this is
impossible.

Which show that fy, f2 and f3 are linearly dependent, i.e., there exist three constants
(¢1,¢2,¢3) # (0,0,0) such that

cifi+cafs+eafs=0. (12)

If ¢; = 0, then ¢ # 0 and ¢3 # 0, from (12) we have g = c—sgo +(1- C—a)A, contradicting
c2 C2
to given condition.

Hence ¢; # 0, combining (8) and (12), we get

- A
(2ol (Bopne =, (13)
<1 —H

v €1
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c . . . . c

assume that — — 1 # 0. Since e is not identically equal to constant, so 2_1 # 0. By
c1 C1

Lemma 1 we have

T(r,9) < N(r, —) + N(r9) + o{T()} (¢ B). (14
On the other hand, by a generalization of Nevanlinna’s second fundament theorem (see
[1])
— 1 1
T(r,f) < N(r,f)+ N(r, m) + N{r, m) + S(r, f)
— 1 1
< N(rf)+ N(r, 7 _“) +N(f,g = (p) +5(r, f)
< T )+ N 525) +T(0) + oT()}
< 2N( )+ Nt )+ Nl —=5) +o{T (). (15)
Combining (14) and (15) we deduce that
— 1 1
T(r) < () + Nl 7) + N, —=5) + o{T(r)}

< (1-¢)T(r) +0{T(r)} (r¢&E),

this is also impossible. Thus -2 — 1 = 0. From (13)

€1
-A
Al . S (16)
p—u €2 — €1
From (16) and (8) we get
- —A
[zb_ g 922, (1
p—u €2 —€C1 @Y— 4
it is easy to see that c; = 0 by Lemma 1. From (16) and (17) we obtain, resprectively;
9-—A=—(p—pe ", (18)
and
f—p=—(p - e, (19)

ie., (f —u)(g — A) = (¢ — #)(¢ — A), this completes the proof of Theorem 1.

The proof of Theorem 2 From given conditions E(oo, f) = E(co,g), E(a,f') =
E(b,g'). We can assume that

(f' —a)=(¢" - b)e". (20)
(i) e* = k (constant). If k # a/b, then
f! kg’

@a—tk) la—bk) (21)
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by Lemma 1 and Lemma 4 we get

T(r,f) < N(r,%)+N(r,§—,)+7V_(r.-f)+0{Ts(r)}

< T( )= T(. )+ N, 7—) + T(0) = Tlrr0)
+ Nir,—) + N(n )+ o{Ta()}, (¢ B),
where Ts(r) = max{T(r, '), T(r,g")}. Hence
T(rf) < N ) + N =) + 2M () (Do)} (¢ ). (22)
Similarly, we can obtain
T(r,g) < N(r, ?é;) + N(r, g—i—d) +oON(r, f)+ o{Ts(r)} (r2E).  (23)

Obviously, o{T3(r)} = o{T(r)}. Combining (22) and (23) we deduce that
T(r) < (1 - &,)T(r) + 0{T(r)} (- ¢ E),

this is contradiction. Which show that if e* equal to constant, then ¢* = a/b. From (20)
f'=a/bg'. Let
f= %g +t, (t= constant ) (24)

So(f-¢)= %(g —d)+(t—c+ %-d). Assume that t; £ ¢ — ¢+ %d # 0, then by Nevan-

linna’s second fundament theorem we have

T(r,f) < T(r,f-c)+o(1)

— 1 1
< N(r,f)+ N(r, ﬁ)JrN(',m) +5(r, f)
= )+ Nl ) + Nl =) + 501, 1)
< (1-e)T(r) +o{T(r)}, (r¢ E). (25)
From (24) we know that
T(r,9) < (1 o(I)T(r, f)- (26)
Combining (25) and (26) we obtain T(r) < (1 — )T (r) + o{T(r)}, (r &€ E), this is
unpossible. Hence t; =t — ¢ + %d =0, i.e., ; € g%d
(il) e™# constant. Let f; = f:, L= g; e fs = %e“, Ty(r) = lréljz_lécs{T(r, fi)}. From
(20) we deduce that o
3
dofi=1 (27)
i=1
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Assume that fq, f; and f3 are liearly independent, by Lemma 2 we have

T(rf) < N(r, %) +N(r, 5) +N(r, ') + N(r, D)

3
- N(nfi) +o{Tu(r)}, (r ¢ E), (28)
i=1
where
h f2 [
D=|fi fi fs
{I él g

From (27), we can get

fl 1 fs b "
p=|f o g|=-2|"
{I 0 fg

So N(r,D) < N(r,f') + 2N{(r, f). Noting that E(oco, f) = E(co,g), hence

o'e*
a? f"' (a'z—f-a")ea )

3
N(r,f')+ N(r,D) — Z N(r, f;) < 2N(r, f) + o{T4(r)}.

i=1 ‘
From (28) and Lemma 4 we obtain
1 1 —
T(r,f) < N(r, = -+ N("g-——é) +3N(r, f) + o{Tu(r)}. (29)
gl ! a
Next, according to Lemma 3 we know that ¢g; = > g2=—-7" e g3= Be_“ are lin-
early independent. In the same manner, we can get
1 1 —
T(r,9) < N(",E)‘FN(',;‘:—d)+3N(f,f)+0{T4(')}- (30)

Combining that (29) and (30) we deduce that
T(r) < (1-€0)-T(r) +0{T(r)}, (r¢E)

this is impossible.
Which shows that f;, fa and f; are linearly dependent, i.e., there exist three constants
(t1,t2,t3) # (0,0,0) such that

tifi+tafs+tsfs =0. (31)
If t; = 0, obviously t; # 0 and t3 # 0. From (31) ¢' = b, from (20) we can deduce that
f' = a, hence f'-g¢' = ab. If t; # 0, combining (20) and (31) we have
t 9 - 13, o
Z 1= - = 32
(- nLe 1= B, (32
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t . t
assume that 1 — t—:i # 0, since €* # constant, t—z — 1 #0, thus
1 1

by Lemma 1 and Lemma 4 we get
1 —_—
T(r,g) < N(r, g—_—&) + N(r,f) +o{T(r)}, (r¢E). (33)
On the other hand, by a generalization of Nevanlinna’s second fundament theorem

T(,f) < W)+ N ) + N jg) +S()

= )+ N )+ N =) +5(n)

)+ T(r.g") + o{T(r)}

IA

N(r,f)+ N(r,

1
f-c¢
< N =)+ IR+ N =)+ olT()} (¢ B (39)

1
f-c

< N(r, )+ 2N(r, f) + T(r,9) + o{T(r)}

Combining (33) and (34) we deduce that T'(r) < (1 — €0)T(r) + o{T(r)}, (r € E), thisis
a contradiction. So 1 —t3/t; = 0. From (32)

j t -
= @ 35
§'= e (35)

from (20) and noting that (35) we get

_ tza
Tt -t

fl

~ be®, (36)

it is easy to see that t; = 0 by Lemma 1 and Lemma 4. From (35) and (36) we can obtain,
respectively: f' = —be®, and g = —ae™?, i.e., f'-¢g' = ab. This completes the proof of
Theorem 2.
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