This is a contradiction. Hence $x \notin \overline{H-F}$, and $H-F \in 2^x$.

Now, we prove that H-F is a cluster point of the net $\{A_{\alpha}, \alpha \in M\}$. Otherwise, then there is a neighborhood $\langle U_1, \cdots, U_l \rangle$ of H-F, and there is $\alpha_0 \in M$ such that $A_{\alpha} \notin \langle U_1, \cdots, U_l \rangle$ for any $\alpha \in M$ if $\alpha_0 \leq \alpha$. Without loss of generality, suppose $F \neq \emptyset$ and $I \cap \{I_i\} \cap \{I$

It is easy to see that countable compactness of X does not imply countable compactness of 2^X .

References

- [1] E. Michael, Topologies on spaces of subsets, Tran. Amer. Math. Soc., 71(1951), 152-182.
- [2] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc., 24(1970), 760-766.
- [3] E. Englking, General Topology, Polish Scientific Publishers, Warsgawa (Poland), 1977.
- [4] G. Aquare, "Point countable open covering and countably compact space" in General Topology and its Relations to Modern Analysis and Algebra, (Proc. Second Prague Topological Sympos, 1966) Academia, Prague, 1967, 39-41.
- [5] D. Burke, Closed Mapping, Surveys in General Topology, Academic Press. Inc., 1-32, 1980.
- [6] Yang Xu, Compactness and D-compactness in hyperspaces 2^X, J. of Math. (PRC), Vol.11, 4(1991), 417-421.

超空间2x的局部覆盖性质

杨 旭 (四平师范学院数学系,132000)

摘要

本文讨论了超空间 2^X 的某些局部覆盖性质,并给出下面二个结果: 定理1 设X 是 T_2 空间,则 2^X 紧当且仅当 2^X 是局部meta-Lindelöf 空间. 定理 2^1 设X 是 T_1 空间,则 2^X m- 紧当且仅当 2^X 是局部m- 紧.

关键词: 超空间, m- 紧性.

Local Covering Properties of Hyperspaces 2^{X} *

Yang Xu
(Dept. of Math., Siping Normal Institute, Siping 132000)

Abstrict We discuss some local covering properties of 2^X , and prove that some covering properties are equivalent to local properties in 2^X .

Key words Hyperspace, meta-Lindelöf, m-compactness.

Covering properties of hyperspaces have been widely discussed, and some important results were obtained. For example, J. Keesling [2] gave:

Theorem The following are equivalent:

- (a) X is compact.
- (b) 2^X is compact.
- (c) 2^X is Lindelöf.
- (d) 2^X is paracompact.
- (e) 2^X is metacompact.
- (f) 2^X is meta-Lindelöf.

In this paper we consider Local covering properties.

Let X be a topological space. 2^X the space of closed subsets of X with Vietoris topology which we now refer to as the hyperspace of X, and

$$\langle E_1, \cdots, E_n \rangle = \{E \in 2^X : E \subset \sum_{i=1}^n E_i, \ E \bigcap E_i \neq \emptyset \text{ for all } i = 1, \cdots, n\},$$

here, $E_i \subset X$ for each $i \leq n$.

X is a meta-Lindelöf space, if each open cover has a point countable open refinement.

X is an m-compact space, if each open cover with cardinal is less than or equal to m has a finite subcover.

X is a locally meta-Lindelöf space, if there is neighborhood U of x such that \overline{U} is a meta-Lindelöf space for each $x \in X$.

The definition of local m-compact space is obvious.

Lemma 1([2]) If N denotes the set of natural numbers with discrete topology, then 2^N is not meta-Lindelöf.

^{*}Received Dec. 24, 1991.

Theorem 1 Let X be a T2 space. Then the following statements are equivalent:

- (1) X is compact.
- (2) 2^X is compact.

- (2) 2^{X} is compact. (3) 2^{X} is meta-Lindelöf. (4) 2^{X} is locally meta-Lindelöf. (5) there is $\{E_{1}, \dots, E_{n}\} \subset 2^{X}$ such that $E_{i} \bigcup_{j \neq i} E_{j} \neq \emptyset$ for each $i \leq n$, $X \in$

 $\langle E_1, \cdots, E_n \rangle$ and $\langle E_1, \cdots, E_n \rangle$ is a meta-Lindelöf space.

Proof (1) \Rightarrow (2) can be obtained from Theorem 4.2 of [1]. It is obvious that (2) \Rightarrow (3) and $(3) \Rightarrow (4)$. Now we prove that $(4) \Rightarrow (5)$:

Suppose that $X \in \langle \overline{U_1}, \cdots, \overline{U_n} \rangle$, and $\langle \overline{U_1}, \cdots, \overline{U_n} \rangle$ is a meta-Lindelöf space. Here U_1, \cdots, U_n are open sets in X. If $\overline{U_1}, \cdots, \overline{U_n}$ do not satisfy (5), without loss of generality we suppose that $\overline{U_i} \neq \overline{U_j}$ for $i \neq j$, $\overline{U_1} \subset \bigcup \overline{U_i}$ and $\overline{U_i} - \overline{U_1} \neq \emptyset$ for $i \neq 1$. Set $U_1^1 = U_1$,

 $\begin{array}{c} U_i^1 = U_i - \overline{U_1} \text{ for } i \neq 1. \text{ Then } U_i^1 \neq \emptyset \text{ and } U_1^1 \cap U_i^1 = \emptyset \text{ for } i \neq 1. \text{ It is easy to see that } \\ U_i^1 \subset U_i \text{ and } \langle \overline{U_1^1}, \cdots, \overline{U_n^1} \rangle \subset \langle \overline{U_1}, \cdots, \overline{U_n} \rangle. \text{ So } \langle \overline{U_1^1}, \cdots, \overline{U_n^1} \rangle \text{ is a meta-Lindel\"of space.} \\ \text{We assert that } X \in \langle \overline{U_1^1}, \cdots, \overline{U_n^1} \rangle: \text{ for any } x \in X, \text{ if } x \in \overline{U_1}, \text{ then } x \in \overline{U_1^1}, \text{ if } x \notin \overline{U_1}, \end{array}$

then there exists $i \leq n$ such that $x \in \overline{U_i}$. So, $x \in \overline{U_i^1}$.

If $\overline{U_i^1} - \bigcup_{j \neq i} \overline{U_j^1} \neq \emptyset$ for each $i \leq n$, the proof is completed. Otherwise, without loss of

generality suppose $\overline{U_i^1} \neq \overline{U_j^1}$ for $i \neq j$ $(i, j \leq n)$, and $\overline{U_2^1} \subset \bigcup \overline{U_i^1}$ and $\overline{U_i^1} - \overline{U_2^1} \neq \emptyset$ for

 $i \neq 2$. Set $U_2^2 = U_1^1$, $U_i^2 = U_i^1 - \overline{U_2^1}$ $(i \neq 2)$, then $U_1^2 = U_1^1 - \overline{U_2^1} = U_1^1$. Similarly, we can prove that $X \in \langle \overline{U_1^2}, \cdots, \overline{U_n^2} \rangle$ and $\langle \overline{U_1^2}, \cdots, \overline{U_n^2} \rangle$ is a meta-Lindelöf space, and $U_1^2 \cap U_i^2 = \emptyset$ for $i \neq 1$, and $U_2^2 \cap U_i^2 = \emptyset$ for $i \neq 2$.

Repeating above process, a collection consisting of open sets which satisfy (5) will be obtained in finite steps.

- $(5) \Rightarrow (1)$: It can be completed in two steps.
- a) First we prove that X is a countably compact space, and E_i is countably compact for each $i \leq n$.

Otherwise, there is a sequence $\{x_i\}$ with no cluster point in X. Let $N = \{x_i\}$. Without

loss of generality, when $i \leq m \leq n$, suppose that $N \subset \bigcup_{i=1}^{m} E_i$ and $N \cap (\bigcup_{i=1}^{n-m} E_{m+i}) = \emptyset$. Choose $x_i^* \in E_{m+i} - \bigcup_{j \neq m+i} E_j$, and set $F = \{x_1^*, \dots, x_{n-m}^*\}$, $\mathcal{F}_1 = 2^N$, $\mathcal{F}_2 = \{E \cup F : E \in \mathbb{R}^N\}$

 2^N . Here, suppose $F \neq \emptyset$. Now, we define a mapping $f: \mathcal{F}_2 \to \mathcal{F}_1$ such that $f(E \cup F) = E$ for any $E \cup F \in \mathcal{F}_2$. Obviously, f is a bijection.

Suppose that $E\in\mathcal{F}_1$. Let $\langle U\rangle\cap\mathcal{F}_1$ be an open neighborhood of E. Then $E\cup F\in$ $\langle U,V\rangle\cap\mathcal{F}_2$, here $V=(\bigcup^{n-m}E_{m+i})^0$. Thus, for any $H\in 2^N$, if $H\cup F\in \langle U,V\rangle$, then $H\subset U$.

Hence $f(H \bigcup F) \in \langle U \rangle \bigcap \mathcal{F}_1$, and $f[\langle U, V \rangle \bigcap \mathcal{F}_2] \subset \langle U \rangle \bigcap \mathcal{F}_1$. If $\langle X, U \rangle \cap \mathcal{F}_1$ is an open neighborhood of E, set V = U - F. Then $\langle X, V \rangle \cap \mathcal{F}_1$ and

 $\langle X,V \rangle \cap \mathcal{F}_2$ is an open neighborhood of E and $E \cup F$ respectively. Obviously, we have

$$f[\langle X,V\rangle \cap \mathcal{F}_2] \subset \langle X,V\rangle \cap \mathcal{F}_1 \subset \langle X,U\rangle \cap \mathcal{F}_1,$$

and f is continuous.

We may prove that f^{-1} is also continuous. For any $E \cup F \in \mathcal{F}_2$, let $\langle U \rangle \cap \mathcal{F}_2$ be an open neighborhood of $E \cup F$. Then $E \cup F \subset U$. Set V = U - F, since $E \cap F = \emptyset$, $E \in \langle V \rangle \cap \mathcal{F}_1$. Thus $f^{-1}[\langle V \rangle \cap \mathcal{F}_1] \subset \langle U \rangle \cap \mathcal{F}_2$.

If $\langle X, U \rangle \cap \mathcal{F}_2$ is an open neighborhood of $E \cup F$, then $U \cap (E \cup F) \neq \emptyset$. If $U \cap F \neq \emptyset$, then $f^{-1}[\mathcal{F}_1] \subset \langle X, U \rangle \cap \mathcal{F}_2$. If $U \cap F = \emptyset$, then $U \cap E \neq \emptyset$. Hence $E \in \langle X, U \rangle \cap \mathcal{F}_1$, and

$$f^{-1}[\langle X,U\rangle\bigcap\mathcal{F}_1]\subset\langle X,U\rangle\bigcap\mathcal{F}_2.$$

So f^{-1} is continuous.

Thus $f: \mathcal{F}_2 \to \mathcal{F}_1$ is a homeomorphism.

Next, we prove that \mathcal{F}_2 is a closed subset of $\langle E_1, \dots, E_n \rangle$. By 2.2 of [1], it is easy to see that $2^{N \cup F}$ is a closed subset of 2^X , and

$$2^{N \cup F} = 2^N \bigcup \{E \bigcup \{x_1^*\} : E \in 2^N\} \bigcup \cdots \bigcup \{E \bigcup F : E \in 2^N\} \bigcup 2^F.$$

Suppose $M \in 2^{N \cup F} - (\mathcal{F}_2 \cup 2^F)$, then $F - M \neq \emptyset$. Thus, $\langle X - (F - M) \rangle$, and $M \in \langle X - (F - M) \rangle \cap \mathcal{F}_2 = \emptyset$. Since $2^F \cap \mathcal{F}_2 = \emptyset$, \mathcal{F}_2 is a closed subset of $2^{N \cup F}$. Hence \mathcal{F}_2 is a closed subset of 2^X , and it is also closed in $\langle E_1, \dots, E_n \rangle$.

Since $\langle E_1, \dots, E_n \rangle$ is meta-Lindelöf, and 2^N is homeomrphic to \mathcal{F}_2 , therefore 2^N is a meta-Lindelöf space. Note that N is a discrete closed subset of X. This is a contradiction to Lemma 1.

b) Now we prove that E_i is a meta-Lindelöf space for each $i \leq n$. Define a mapping

$$\psi: E_1 \times \cdots \times E_n \to \langle E_1, \cdots, E_n \rangle$$

such that $\psi(x) = \{x_1, \dots, x_n\}$ for any $x = (x_1, \dots, x_n) \in E_1 \times \dots \times E_n$. Then ψ : $E_1 \times \dots \times E_n \to \psi[E_1 \times \dots \times E_n]$ is a perfect mapping and $\psi[E_1 \times \dots \times E_n]$ is closed in $\langle E_1, \dots, E_n \rangle$ (see the proof of Theorem 1 in [6]), and $\psi[E_1 \times \dots \times E_n]$ is meta-Lindelöf. So, $E_1 \times \dots \times E_n$ is a meta-Lindelöf space (see table II of [5]). It is easy to see that E_i is homeomorphic to a closed subset of $E_1 \times \dots \times E_n$, and so E_i is a meta-Lindelöf space for each $i \leq n$.

By (a) and (b), E_i is a compact subset for each $i \leq n$ (see [4]). So, $X = \bigcup_{i=1}^n E_i$ is a compact space.

By the above theorem we know that some covering properties and their Local properties in 2^X are equivalent.

The following lemma is clear.

Lemma 2 Let m be an infinite cardinal. Then X is an m-compact space if and only if each net $\{x_{\alpha}, \alpha \in D\}$ has a cluster point in X whenever $|D| \leq m$.

Theorem 2 Let X be a T₁ space. Then the following statements are equivalent.

(1) 2^X is m-compact,

(2) 2^X is locally m-compact,

(3) There is $\{E_1, \dots, E_n\} \subset 2^x$ such that $E_i - \bigcup E_j \neq \emptyset$ for any $i \leq n$, and $\langle E_1, \dots, E_n \rangle$

is an m-compact space and $X \in \langle E_1, \cdots, E_n \rangle$.

Proof We only prove that $(3) \Rightarrow (1)$.

Let $\{A_{\alpha}, \alpha \in D\}$ be a net in 2^{X} and $|D| \leq m$. Since $X \in \langle E_1, \dots, E_n \rangle$, there exists some E_i , without loss of generality suppose i=1, for any $\alpha\in D$ there is $\beta\in D$ such that $\alpha \leq \beta$ and $A_{\beta} \cap E_1 \neq \emptyset$. Set $D_1 = \{\alpha \in D : A_{\alpha} \cap E_1 \neq \emptyset\}$, then $\{A_{\alpha}, \alpha \in D_1\}$ is a subnet of $\{A_{\alpha}, \alpha \in D_1\}$. Thus after a suitabe relabelling, there will be a subnet $\{A_{\alpha}, \alpha \in D_k\}$ of the net $\{A_{\alpha}, \alpha \in D\}$ such that $A_{\alpha} \cap E_i \neq \emptyset$ for any $\alpha \in D_k$ and $i \leq k$, and for any $i \geq k+1$ there is $\alpha_i \in D_k$ such that $A_{\alpha} \cap E_i = \emptyset$ whenever $\alpha_i \leq \alpha$ for any $\alpha \in D_k$ $(i = k+1, \dots, n)$. Hence there exists $\beta \in D_k$ such that $\alpha_i \leq \beta$ for all $i = k + 1, \dots, n$. So $\{A_\alpha, \alpha \in D_k \text{ and } \}$ $\beta \leq \alpha$ is a subnet of $\{A_{\alpha}, \alpha \in D_k\}$, and is also a subnet of $\{A_{\alpha}, \alpha \in D\}$. This subnet is denoted by $\{A_{\alpha}, \alpha \in M\}$. Obviously, $|M| \leq m$ and $A_{\alpha} \cap E_i = \emptyset$ for any $\alpha \in M$ and $i \geq k+1$.

Choose $x_i \in E_{k+i} - \bigcup_{j \neq k+i} E_j$, set $F = \{x_1, \dots, x_{n-k}\}$. Then $\{A_\alpha \cup F, \alpha \in M\}$ is a net in $\langle E_1, \dots, E_n \rangle$. Since $\langle E_1, \dots, E_n \rangle$ is *m*-compact, $\{A_\alpha \cup F, \alpha \in M\}$ has a cluster point $H \in \langle E_1, \cdots, E_n \rangle$.

We assert that $H - F \in 2^{x}$.

First we prove that $H - F \neq \emptyset$. Otherwise, $H \subset F$. It is easy to see that $H \supset F$

(Otherwise, then $H \in \langle X - (F - H) \rangle$, and there is $A_{\alpha} \cup F \in \langle X - (F - H) \rangle$: a contradiction). Thus, H = F. Set $V = (\bigcup_{i=k+1}^{n} E_i)^o$. Then $H \in \langle V \rangle$. Thus, there is $\alpha \in M$ such that $A_{\alpha} \cup F \in \langle V \rangle$, and there exists E_{k+i} such that $A_{\alpha} \cap E_{k+i} \neq \emptyset$, a contradiction.

Next, we prove that H - F is closed. Suppose $x \notin H - F$, then $x \notin H$ or $x \in H \cap F$. If $x \notin H$, then $(H - F) \cap (X - H) = \emptyset$. If $x \in H \cap F$, then there is $i \in \{1, \dots, n - k\}$ such that $x \in E_{k+i} - \bigcup_{j \neq k+i} E_j = X - \bigcup_{j \neq k+i} E_j$. Assume that $x \in \overline{H - F}$, then

$$(X-\bigcup_{j\neq k+i}E_j)\bigcap (H-F)\neq\emptyset$$

and

$$(X - \bigcup_{i \neq k+i} E_i - \{x\}) \bigcap (H - F) \neq \emptyset.$$

Hence $H \in \langle X, X - \bigcup_{j \neq k+i} E_j - \{x\} \rangle$, and there exists $\alpha \in M$ such that $A_\alpha \cup F \in \langle X, X - \bigcup_{j \neq k+i} E_j - \{x\} \rangle$. So, $(A_\alpha \cup F) \cap (X - \bigcup_{j \neq k+i} E_j - \{x\}) \neq \emptyset$. Therefore we have

$$A_{\alpha} \bigcap E_{k+i} \supset A_{\alpha} \bigcap (X - \bigcup_{j \neq k+i} E_j - \{x\}) \neq \emptyset.$$

This is a contradiction. Hence $x \notin \overline{H-F}$, and $H-F \in 2^x$.

Now, we prove that H-F is a cluster point of the net $\{A_{\alpha}, \alpha \in M\}$. Otherwise, then there is a neighborhood $\langle U_1, \cdots, U_l \rangle$ of H-F, and there is $\alpha_0 \in M$ such that $A_{\alpha} \notin \langle U_1, \cdots, U_l \rangle$ for any $\alpha \in M$ if $\alpha_0 \leq \alpha$. Without loss of generality, suppose $F \neq \emptyset$ and $I \cap \{I_i\} \cap \{I$

It is easy to see that countable compactness of X does not imply countable compactness of 2^X .

References

- [1] E. Michael, Topologies on spaces of subsets, Tran. Amer. Math. Soc., 71(1951), 152-182.
- [2] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc., 24(1970), 760-766.
- [3] E. Englking, General Topology, Polish Scientific Publishers, Warsgawa (Poland), 1977.
- [4] G. Aquare, "Point countable open covering and countably compact space" in General Topology and its Relations to Modern Analysis and Algebra, (Proc. Second Prague Topological Sympos, 1966) Academia, Prague, 1967, 39-41.
- [5] D. Burke, Closed Mapping, Surveys in General Topology, Academic Press. Inc., 1-32, 1980.
- [6] Yang Xu, Compactness and D-compactness in hyperspaces 2^X, J. of Math. (PRC), Vol.11, 4(1991), 417-421.

超空间2x的局部覆盖性质

杨 旭 (四平师范学院数学系,132000)

摘要

本文讨论了超空间 2^X 的某些局部覆盖性质,并给出下面二个结果: 定理1 设X 是 T_2 空间,则 2^X 紧当且仅当 2^X 是局部meta-Lindelöf 空间. 定理 2^1 设X 是 T_1 空间,则 2^X m- 紧当且仅当 2^X 是局部m- 紧.

关键词: 超空间, m- 紧性.