This is a contradiction. Hence r ¢ H — F, and H — F € 27,

Now, we prove that H — F is a cluster point of the net {A,,a € M}. Otherwise,
then there is a neighborhood (U;,---,U;) of H — F, and there is ap € M such that
Ay & (Ua,---,U;) for any @ € M if ap < . Without loss of generality, suppose F' # § and

i l

F(UU Us) = 0. Then Ao ¢ | U; or there exists j € {1,---,1} such that A, NU; = 0 for
=1 1=1

ag < a. SetV =X - U Aa,sincan U Ay =0,H € (Uy,---,U,V), thereisg € M
acM acM

i
and ag < § such that AgU F € (Uy,---,U;,V). Hence Ag C U U; and AgNU; # @ for

=1
every j <l : a contradiction. Therefore H — F is a cluster point of the net {A,,a € M},
and it is a cluster point of {A,,a € D}. Hence, 2% is m-compact.

It is easy to see that countable compactness of X does not imply countable compactness
of 2X.
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Abstrict We discuss some local covering properties of 2%, and prove that some covering
properties are equivalent to local properties in 2%,
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Covering properties of hyperspaces have been widely discussed, and some important
results were obtained. For example, J. Keesling [2] gave:

Theorem The folloming are equivalent:

(a) X is compact.

(b) 2% is compact.

(c) 2% is Lindelof.

(d) 2% is paracompact.

(e) 2% is metacompact.

(f) 2% is meta-Lindelsf.

In this paper we consider Local covering properties.

Let X be a topological space. 2% the space of closed subsets of X with Vietoris
topology which we now refer to as the hyperspace of X, and

n
(Ey,--,En)={E€2X :Ec)> E;, E(E#0foralli=1,---,n},
i=1
here, E; C X for each t < n.
X is a meta-Lindelof space, if each open cover has a point countable open refinement.
X is an m-compact space, if each open cover with cardinal is less than or equal to m
has a finite subcover.
X is a locally meta-Lindelof space, if there is neighborhood U of z such that U is a
meta-Lindelof space for each r € X.
The definition of local m-compact space is obvious.

Lemma 1({2]) If N denotes the set of natural numbers with discrete topology, then 2V
18 not meta-Lindelof.

*Received Dec. 24, 1991.
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Theorem 1 Let X be a T, space. Then the following statements are equivalent:

(1) X is compact.

(2) 2% is compact.

(8) 2% is meta-Lindeldf.

(4) 2% is locally meta-Lindelof.

(5) there is {E1,---,Ep} C 2X such that E; - UE,‘#@ for each i+ < n, X €

IF
(Er,---,En) and (Ey,---, E,) is a meta- Lindelof space.
Proof (1)= (2) can be obtained from Theorem 4.2 of [1]. It is obvious that (2)=> (3)
and (3)= (4). Now we prove that (4)= (5):

Suppose that X € (Uy,---,Un), and (Uy,---,Uy,) is a meta-Lindelof space. Here
Ui,---,Up are open sets in X. If Uy,---,U, do not satisfy (5), without loss of generality
we suppose that U; # U; for i # 5, U; C Uﬁ;mdﬁ—?ﬂ#@ for 1 # 1. Set U} = Uy,

i#1
Ul =U; - U, fori # 1. Then Ul # @ and U] N Uil =@ for 1 # 1. It is easy to see that
U} c U; and (U_ll, o, UL c (U7,---,T,). So (U—ll, o, Ul is a meta-Lindeldf space.

We assert that X € <U_11,,U_,{) for any z € X, if z € Uy, then z € U}, if z ¢ Uy,
then there exists 1 < n such that z € U;. So, z € U_'1

If DT‘I - U U_J1 # 0 for each 1 < n, the proof is completed. Otherwise, without loss of

J#s
generality suppose U_'l # U_]1 fori# 3 (¢,7 < n), and U—.} C U U_'l and U_'1 — UL # 0 for
i#2
i #2 Set U = UL, U =U}! — U} (i # 2), then U = U} — U} = U}. Similarly, we can
prove that X € (UZ,---,UZ) and (Elf, .++,U?) is a meta-Lindelof space, and U2 NU2 = 0
fori# 1,and UZNU? =0 for i # 2.

Repeating above process, a collection consisting of open sets which satisfy (5) will be
obtained in finite steps.

(5)= (1): It can be completed in two steps.

a) First we prove that X is a countably compact space, and E; is countably compact
for each 1 < n. ‘

Otherwise, there is a sequence {z;} with no cluster point in X. Let N = {z;}. Without

m n-m

loss of generality, when 1 < m < n, suppose that N C U E; and Nﬂ( U Epnyi) = 0.
i=1 i=1

Choose z; € Epyi — U E;, and set F = {z},---,z)_n}, i = 2V 7, ={EUF:E€

J#m+i
2V}, Here, suppose F # §. Now, we define a mapping f : f — 7 such that f(EUF)=E
for any EU F € #,. Obviously, f is a bijection.
Suppose that E € ;. Let (U) N # be an open neighborhood of E. Then FUF €
n—m

(U,V)N 7, here V = (| Em+:)°. Thus, forany H € 2V, if HUF € (U,V), then H C U.
i=1

Hence f(HUF) € (U)nfl, and f[(U,V)ﬂ?’g] C (U)nfl.
If (X,U)N # is an open neighborhood of E, set V = U — F. Then (X,V) N # and
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(X,V)N 7; is an open neighborhood of E and E U F respectively. Obviously, we have
X VYN R c (X, VN A (X, U A,

and f is continuous.

We may prove that f~! is also continuous. For any EUF € 7, let (U)N 7; be an open
neighborhood of EUF. Then EUF c U. SetV =U — F,since ENF =0, E€ (V)N 7.
Thus f7(V)(A] c (U)() %

If (X,U) N 7, is an open neighborhood of EU F,then UN(EUF) # 8. fUNF # @,
then fA]c (X, U)NnRH. HUNF =0,then UNE # §. Hence E € (X,U) N #, and

A (G SATRFARNC A TRES

So f~! is continuous.

Thus f : 7 — # is a homeomorphism.

Next, we prove that 7 is a closed subset of (Ey,---, E,). By 2.2 of 1], it is easy to
see that 2VYF is a closed subset of 2X, and

aNF — oV | {E (=} : Ee 2™} {EUF: Ee2V}2F.

Suppose M € 2NYF _ (F, U 2F), then F -~ M # 0. Thus, (X — (F - M)), and
Me(X~(F-M))nFH =40. Since 2F N % = 0, 7, is a closed subset of 2V"F. Hence 7
is a closed subset of 2%, and it is also closed in (Ej,---, E,).

Since (Ej,:--, E,) is meta-Lindelof, and 2V is homeomrphic to 7, therefore 2V is a
meta-Lindelof space. Note that N is a discrete closed subset of X. This is a contradiction
to Lemma 1.

b) Now we prove that E; is a meta-Lindelof space for each ¢ < n.

Define a mapping

Y:E1 XX E, > (Ey,--+,Ep)

such that ¢(z) = {z1,---,zn} for any z = (z1,--,2,) € Ey X -+- X E,. Then ¢ :
By X .- x E, —» ¢[Ey X -+- x E,] is a perfect mapping and ¢[E; x -+- x E,] is closed in
(E1, -, Ep) (see the proof of Theorem 1 in [6]), and ¢[E; X -+ X E,] is meta-Lindelof.
So, Ej X --- X E, is a meta-Lindelof space (see table II of [5]). It is easy to see that E; is
homeomorphic to a closed subset of E; X --- X Ey,, and so E; is a meta-Lindelof space for
each 1 < n.

n
By (a) and (b), E; is a compact subset for each { < n (see [4]). So, X = | J E; is a
i=1
compact space.
By the above theorem we know that some covering properties and their Local properties
in 2X are equivalent.
The following lemma is clear.

Lemma 2 Let m be an infinite cardinal. Then X 1s an m- compact space if and only if
each net {z,,c € D} has a cluster point in X whenever |[D| < m.

Theorem 2 Let X be a Ty space. Then the following statements are equivalent.
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(1) 2% is m-compact,

(2) 2% is locally m-compact,

(8) Thereis{Ey,---,E,} C 2% such that E; — U E; # 0 for anyi < n, and (Ey, -+, Ey,)

t
s an m-compact space and X < (Ey,---, E,). ”
Proof We only prove that (3)=> (1).

Let {As,a € D} be a net in 2X and [D| < m. Since X € (Ey,---, Ey), there exists
some E,, without loss of generality suppose ¢ = 1, for any a € D there is § € D such that
a<Band AgNE; #0. Set Dy = {a € D: A, N Ey # 0}, then {A,,a € Dy} is a subnet
of {Aq,a € D;1}. Thus after a suitabe relabelling, there will be a subnet {44, € Dy} of
the net {A,,a € D} such that A,NE; # @ forany o € D and ¢ < k,and forany « > k+1
there is o; € Dy such that A, N E; = @ whenever o < aforany o € Dy (1 = k+1.---,n).
Hence there exists 3 € Dy such that o; < B forallt =k+1,---,n. So {A4, ¢ € Dy and
B < a} is a subnet of {A,, € Dk}, and is also a subnet of {A,,a € D}. This subnet
is denoted by {A4,a € M}. Obviously, |M! < m and A, N E; = 0 for any a € M and
1> k+ 1

Choose z; € Ey; — U E;, set F = {zy,"-+,%Zn-k}. Then {4, U F,a € M} is a net

| k41
n (Ey,---,E,). Since (JE#'I,---,E,,) is m-compact, {A, U F,a € M} has a cluster point
f{EE<Eh,"',E%>.

We assert that H — F < 2%,

First we prove that H — F # 0. Otherwise, H C F. It is easy to see that H D F
(Otherwise, then H € (X —(F— H)) and there is A,UF & (X —(F— H)): a contradiction).

n

Thus, H = F. Set V =( |J E:)°. Then H € (V). Thus, there is a € M such that

Ay U F € (V), and there e‘xi:t;lEH.- such that A, N Eyy; # 0, a contradiction.

Next, we prove that H — F is closed. Suppose x ¢ H — F,thenz g Horz € HN F.
Hzg H,then (H-F)N(X—-H)=0.Ifz€ HNF, then thereisi € {1,---,n — k} such
that z € Eyp . — U E;i=X- U E;. Assume that z € H — F, then

JAk+i FEk+
U E)NEHE-F)#0
JEk+E
and
- U E-{=pN@E-n#0
JF£k+1
Hence H € (X, X — U E; — {z}), and there exists a € M such that A, U F € (X, X~
J#k+i
U E; — {z}). So, (Ao UF)N (X - U E; — {z}) # 0. Therefore we have
IEk+i JEk+e
Ac(VErri D Aa[Y(X = |J Ej—{z}) #
JEk+
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This is a contradiction. Hence r ¢ H — F, and H — F € 27,

Now, we prove that H — F is a cluster point of the net {A,,a € M}. Otherwise,
then there is a neighborhood (U;,---,U;) of H — F, and there is ap € M such that
Ay & (Ua,---,U;) for any @ € M if ap < . Without loss of generality, suppose F' # § and

i l

F(UU Us) = 0. Then Ao ¢ | U; or there exists j € {1,---,1} such that A, NU; = 0 for
=1 1=1

ag < a. SetV =X - U Aa,sincan U Ay =0,H € (Uy,---,U,V), thereisg € M
acM acM

i
and ag < § such that AgU F € (Uy,---,U;,V). Hence Ag C U U; and AgNU; # @ for

=1
every j <l : a contradiction. Therefore H — F is a cluster point of the net {A,,a € M},
and it is a cluster point of {A,,a € D}. Hence, 2% is m-compact.

It is easy to see that countable compactness of X does not imply countable compactness
of 2X.
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