Group Boolean Algebras *

W.B. Vasantha Kandasamy
(Dept. of Math., Indian Institute of Technology, India)

In this note we define a new algebraic structure called group Boolean algebra which are groups over Boolean algebras; analogous to group algebras which are groups over rings. We study only group Boolean algebras over the Boolean algebra B = [0, 1]; as every other finite Boolean algebra is isomorphic to a direct product of [0, 1]. Throughout this paper B denotes the Boolean algebra B = [0, 1] and G a group and BG the group Boolean algebra of group G over the Boolean algebra G.

Definition 1 Let B = [0,1] be the Boolean algebra of order 2 and G any group. The group Boolean algebra BG of G over B consists of all formal sums $\alpha = \sum \alpha_i g_i$ with $\alpha \in B$ and $g_i \in G$ such that supp $\alpha = \{g_i/\alpha_i \neq 0\}$, the support of α is finite; with the following operational rules.

- (i) $\sum \alpha_i g_i = \sum \beta_i g_i \iff \alpha_i = \beta_i$ for all $g_i \in G$.
- (ii) $\sum \alpha_i g_i + \sum \beta_i g_i = \sum (\alpha_i + \beta_i) g_i$ $\alpha_i, \beta_i \in B$ and $g_i \in G$.
- (iii) $(\sum \alpha_i g_i)(\sum \beta_j g_j) = \sum \gamma_k g_k$ where $\gamma_k = \sum \alpha_i \beta_j$ and $g_i g_j = g_k$.
- (iv) $1 \cdot g_i = g_i$ for all $g_i \in G$ and $1 \in B$. $1 \in G$ and $1 \in B$ are identified to be 1 in BG. Since $1 \in G$, B. $1 \subseteq BG$, hence there is a natural embedding of B in BG. Thus $b \to b1$ is an embedding of B in BG, after identification of $B \cdot l$ with B we have $B \subseteq BG$. Clearly for all $b \in B$ and $g \in G$ by g = gb. Thus $g \in B$ and $g \in G$ is identified as the identity of $g \in G$.

Example B = [0,1] be the Boolean algebra of two elements and $G = \langle g|g^2 = 1\rangle$ be the cyclic group of degree 2. $BG = \{0,1,g,1+g\}$.

Proposition 2 Let B be the Boolean algebra [0,1] and G any group. The Group Boolean algebra BG is a semiring with 1.

Proof BG is obviously a semigroup under +. Further $1 \in BG$. Hence BG is a semiring with 1.

It is interesting and important to note that unlike a group algebra, a group Boolean algebra is just a semiring.

^{*}Received Aug. 22, 1992.

Theorem 3 BG is a strict semiring.

Proof As if $\alpha, \beta \in BG$. $\alpha + \beta = 0$ is possible if and only if $\alpha = 0$ and $\beta = 0$.

Theorem 4 BG is an idempotent semigroup under addition.

Proof As 1+1=1 in BG we have BG to be an idempotent semigroup under +.

Theorem 5 BG has no nontrivial zero divisors.

Proof Since in B we have only 0 and 1 and 1+1=1, we have $\alpha \cdot \beta = 0$ $\alpha, \beta \in BG$. $(\alpha = \sum g_i \ \beta = \sum h_i); \ \alpha\beta = \sum g_i g_i = 0$ is possible if and only if $\alpha = 0$ or $\beta = 0$.

Theorem 6 Let G be a group having an element of finite order and B = [0, 1]. Then BG has no nontrivial idempotents with respect to multiplication.

Proof Let $g \in G$ $(g \neq 11)$ such that $g^n = 1$. Clearly $(1+g+\cdots+g^{n-1})^2 = 1+g+\cdots+g^{n-1}$ as 1+1=1 in BG. Hence the result.

Theorem 7 Let G be a torsion free abelian group and B = [0, 1]. The group ring BG has no nontrivial idempotents with respect to multiplication.

Proof Let $\alpha = \sum g_i$ with $g_i \in G$. Since G is torsion free abelian; G is orderable. Let $g_1 < g_2 < \cdots < g_n$. Now from $\alpha^2 = \sum g_i^2 + \sum g_i g_j$ $(i \neq j)$, we have that g_1^2 is the smallest and g_n^2 is the largest element of supp α^2 which cannot equal any other element. Hence $\alpha^2 \neq \alpha$. Thus BG has no nontrivial idempotents.

Theorem 8 Let G be a group having a finite subgroup H and B = [0, 1]. Then BG has nontrivial idempotents with respect to multiplication.

Proof Let $H = \{1, h_1, \dots, h_n\}$ be the subgroup of G of finite order. Clearly if $\alpha = 1 + h_1 + \dots + h_n$ then $\alpha^2 = \alpha$ using the fact 1 + 1 = 1. Hence the theorem.

Theorem 9 Let G be a torsion free non-abelian group and B = [0,1] be the Boolean algebra. Then the group Boolean algebra BG has no nontrivial idempotents with respect to multiplication.

Proof Suppose $\alpha^2 = \alpha$ where $\alpha = \sum g_i$ then $\{g_1, \dots, g_n\}$ forms a finite subgroup of G, since 1+1=1 in BG and BG is a strict semiring. These in turn imply that G has an element of finite order, a contradiction. Hence $\alpha^2 = \alpha$ is impossible in BG. Thus the semiring BG has no zero divisors.

Theorem 10 BG is a non-commutative semiring if and only if G is a non-commutative group.

Proof Obvious.

Theorem 11 Let BG be the group Boolean ring of a finite group G over the Boolean algebra B. Then BG has nontrivial ideals.

Proof Let $G = (1, g_1, \dots, g_n)$. Take $\alpha = 1 + \sum g_i$. Then clearly $\alpha^2 = \alpha$. Now $\{0, 1 + g_1 + g_2\}$

 $\cdots + g_n$ is a nontrivial ideal of BG.

Problem If G is torsion free non-abelian or G is a infinite group which has no finite normal subgroups and B = [0,1]. Can BG have nontrival ideals?

Reference

[1] Birkhoff, G., Lattice Theory, A.M.S. Providence, 1948.