Corollary [2] Let R be a ring. Suppose that for all x, y in R, there exists an integer n = n(x,y) > 1 such that $x^n y = xy^n$. Then (i) N forms an ideal of R; (ii) $R = N \oplus R_1$, where R_1 is isomorphic to a subdirect sum of fields. In particular, if N is commutative, then R is commutative.

Proof For all x, y in R, by hypothesis there exist integers m = m(x, y) > 1 and n = m(x, y) > 1n(x, y) > 1 such that

$$x^n y = xy^n$$
 and $(x^n)^m y = x^n y^m$.

Then $x^{mn}y = x^ny^m = x^nyy^{m-1} = xy^{m+n-1}$.

Since the equation mn = m + n - 1 has no integer solutions such that m > 1 and n>1, there exist distinct integers s=s(x,y)>1 and t=t(x,y)>1 such that $x^sy=xy^t$. Then, the proof of corollary is now complete by Theorem.

References

- [1] M. Hasanali and A. Yaqub, Commutativity of rings with constraints on nilpotents and nonnilpotents, Internat. J. Math. & Math Sci., 12(3)(1989), 467-471.
- [2] H.E. Bell, A commutativity study for periodic rings, Pacific J. Math., 70(1977), 29-36.

一类环的结构

郭修展 魏兵 杨勇国 (中国矿业大学数力系,徐州221008)

摘 要

设R是一结合环, N表示R的所有幂零元形成的集合. 本文证明了:

定理 如果环R满足条件: 对于任意 $x_1, \dots, x_k \in R$, 存在依赖于 x_1, \dots, x_k 的字 $\omega_1 = \omega_1(x_2, \dots, x_k) \text{ as } \omega_2 = \omega_2(x_1, \dots, x_{k-1}) \text{ if } \mathbb{E} |\omega_1|_{x_k} > 1, |\omega_2|_{x_1} > 1, \text{ as } |\omega_1| \neq |\omega_2|, \text{ if } \omega_1 = \omega_1(x_2, \dots, x_k) \text{ as } \omega_2 = \omega_2(x_1, \dots, x_{k-1}) \text{ if } \mathbb{E} |\omega_1|_{x_k} > 1, |\omega_2|_{x_1} > 1, \text{ as } |\omega_1| \neq |\omega_2|, \text{ if } \omega_2 = \omega_2(x_1, \dots, x_{k-1}) \text{ if } \mathbb{E} |\omega_1|_{x_k} > 1, |\omega_2|_{x_1} > 1, \text{ as } |\omega_1| \neq |\omega_2|, \text{ if } \omega_2 = \omega_2(x_1, \dots, x_{k-1}) \text{ if } \mathbb{E} |\omega_2|_{x_1} > 1, |\omega_2|_{x_1} > 1, \text{ as } |\omega_1| \neq |\omega_2|_{x_1} > 1, \text{ as } |\omega_2|_{x_1} > 1, |\omega_2|$ 得 $x_1\omega_1(x_2,\cdots,x_k)=\omega_2(x_1,\cdots,x_{k-1})x_k$, 这里k>1是一固定整数,则(i)N 形成R 的 理想; $(ii)R = N \oplus R_1$, 这里 R_1 同构于一些域的次直和. 特别地, 如果N 是交换 的,则R也是交换的.

The Structure of a Class of Rings *

Guo Xiuzhan, Wei Bing, Yang Yongguo (Dept. of Math., China University of Mining and Technology, Xuzhou 221008)

Abstract Let R be a ring, and N the set of all nilpotent elements of R. We prove the following

Theorem If a ring R satisfies the following condition: for all x_1, \dots, x_k in R, there exist words $w_1 = w_1(x_2, \dots, x_k)$ and $w_2 = w_2(x_1, \dots, x_{k-1})$ depending on x_1, \dots, x_k such that $|w_1|_{x_k} > 1$, $|w_2|_{x_1} > 1$, and $|w_1| \neq |w_2|$. Suppose that

$$x_1w_1(x_2,\dots,x_k)=w_2(x_1,\dots,x_{k-1})x_k,$$

where k > 1 is a fixed integer. Then

- (1) N forms an ideal of R;
- (2) $R = N + R_1$, where R_1 is isomorphic to a subdirect sum of fields. In particular, if N is commutative, then R is commutative.

Keywords Rings, subdirect sum, words.

Throughout, R will represent an associative ring, and N will denote the set of all nilpotent elements of R. Recently, Hasanali and Yaqub [1] proved that R is commutative if it satisfies the following three conditions: (i) N is commutative; (ii) $x^k y = xy^k$ for all $x, y \in R - N$; (iii) if $a \in N, b \in R$, and k![a, b] = 0, then [a, b] = 0, where k > 1 is a fixed integer.

We define a word $\omega(x_1, x_2, \dots, x_k)$ in x_1, x_2, \dots, x_k to be a product in which each factor is x_i for some $i = 1, 2, \dots, k$. By the x_i - length of word $\omega(x_1, x_2, \dots, x_k)$, which we denote by $|\omega(x_1, \dots, x_k)|x_i$, we shall mean the number of times x_i appears as factor in $\omega(x_1, x_2, \dots, x_k)$; the sum $|\omega(x_1, \dots, x_k)|x_1 + \dots + |\omega(x_1, \dots, x_k)|x_k$ will be called the length of $\omega(x_1, x_2, \dots, x_k)$ and denote by $|\omega(x_1, \dots, x_k)|$. We consider the following condition:

(*) For all x_1, \dots, x_k in R, there exist words $\omega_1 = \omega_1(x_2, \dots, x_k)$ and $\omega_2 = \omega_2(x_1, \dots, x_{k-1})$ depending on x_1, \dots, x_k such that $|\omega_1|x_k > 1$, $|\omega_2|x_1 > 1$, and $|\omega_1| \neq |\omega_2|$, and suppose

$$x_1\omega_1(x_2,\cdots,x_k)=\omega_2(x_1,\cdots,x_{k-1})x_k, \qquad (1)$$

where k > 1 is a fixed integer.

Theorem Let R be a ring satisfying condition (*). Then

^{*}Received Aug. 27, 1992.

- (i) N forms an ideal of R;
- (ii) $R = N \oplus R_1$, where R_1 is isomorphic to a subdirect sum of fields. In particular, if N is commutative, then R is commutative.

We begin with

Lemma Let R be a semisimple ring satisfying condition (*). Then R is isomorphic to a subdirect sum of fields.

Proof Let $x \in R$, and set $x_1 = x_2 = \cdots = x_k = x$ in (1), we get

$$x^m = x^n \tag{2}$$

for distinct integers m = m(x) > 1 and n = n(x) > 1. Without any loss of generality, we may assume that m > n.

If R is a division ring, then, by (2), $x = x^{m-n+1}$. Then R is a field.

Suppose now that R is a primitive ring. Note that condition (*) is inherited by all subrings and all homomorphic images of R. Note also that no complete matrix ring $(D)_t$ over a division ring D (t > 1) satisfies condition (*), as may be illustrated by taking $x_1 = E_{12}$ and $x_2 = x_3 = \cdots = x_k = E$, we may assume that R is a division ring. Then R is a field.

If R is a semisimple ring, then R is isomorphic to a subdirect sum of primitive rings R_{α} each of which as a homomorphic image of R satisfies condition (*), so each R_{α} is a field. Therefore, R is isomorphic to a subdirect sum of fields R_{α} .

We are now in a position to prove our theorem.

Proof of Theorem (i) Let J be the Jacobson radical of R. By the Lemma, R/J is isomorphic to a subdirect sum of fields F_{α} . Then $N \subseteq J$. On the other hand, for any x in J, by (2) we have $x^n = x^m = x^n \cdot x^{m-n}$, so $x^n = 0$, therefore $J \subseteq N$. Then N = J.

(ii) For each x in R, let \overline{x} be the canonical image of x in R/J, and \overline{x}_{α} the image of \overline{x} in R_{α} . Since R_{α} is a homomorphic image of R, by (2) we have $\overline{x_{\alpha}^{m}} = \overline{x_{\alpha}^{n}}$ so $\overline{x_{\alpha}} = \overline{x_{\alpha}^{2}} \overline{x_{\alpha}^{m-n-1}}$, and hence $\overline{x} = \overline{x^{2}} \overline{x_{\alpha}^{m-n-1}}$, which gives

$$x-x^2x^{m-n-1}\in J(=N).$$

Let $y = x^{m-n-1}$ and $z = x - x^n y^{n-1}$, then

$$z = x - x^{2}y + x^{2}y - x^{3}y^{2} + \dots + x^{n-1}y^{n-2} - x^{n}y^{n-1}$$

$$= (x - x^{2}y) + xy(x - x^{2}y) + \dots + x^{n-2}y^{n-2}(x - x^{2}y) \in N,$$

$$x^{n}y^{n-1} = x^{n+1}y^{n} = \dots = x^{2n}y^{2n-1} = (x^{n}y^{n-1})^{2}y \text{ (by (2))},$$

and

$$y(x^ny^{n-1})=(x^ny^{n-1})y.$$

Let $R_1 = \{x \in R | \text{ there exists } r_x \text{ in } R \text{ such that } x = x^2 r_x \text{ and } x \cdot r_x = r_x \cdot x \}$. Then

$$x = z + x^n y^{n-1} \in N + R_1. (3)$$

Since N is the set of nilpotent elements of R, we get $N \cap R_1 = 0$. It is clear that if R_1 is an ideal, then $R = N \oplus R_1$, and so $R_1 \simeq R/N$. Then it suffices to Prvoe that R_1 is an ideal of R.

Let $a \in R_1$, then $a = a^2 r_a$. Letting $e_a = a r_a$, we have

$$ae_a = a = e_a a$$
 and $e_a^2 = e_a$.

If $a \in R_1$ and $u \in N$, then au, $ua \in N$. Let $x_1 = x_2 = \cdots = x_{k-1} = e_a$ and $x_k = au$ in (1), we have

$$au = \omega_2(e_a, \dots, e_a)au = e_a\omega_1(e_a, \dots, e_a, au) = (au)^{|\omega_1|x_k}e_a \text{ or } (au)^{|\omega_1|x_k}$$

Since au is nilpotent and $|\omega_1|x_k>1$, we obtain au=0. A similar argument shows that ua = 0. Then $R_1N = NR_1 = 0$.

For all a, b in R_1 . Consider

$$(e_a e_b - e_a e_b e_a)^2 = 0 = (e_b e_a - e_a e_b e_a)^2.$$
(4)

Then, by (1) and (4), we have

$$e_ae_b-e_ae_be_a=\omega_2(e_a,\cdots,e_a)(e_ae_b-e_ae_be_a)=e_a\omega_1(e_a,\cdots,e_a,e_ae_b-e_ae_be_a)=0$$

and

$$e_be_a-e_ae_be_a=(e_be_a-e_ae_be_a)\omega_1(e_a,\cdots,e_a)=\omega_2(e_be_a-e_ae_be_a,e_a,\cdots,e_a)e_a=0.$$

Hence $e_a e_b = e_a e_b e_a = e_b e_a$. Let $e = e_a + e_b - e_a e_b$. Then

$$e^2 = e$$
, $ae = ea = a$, and $be = eb = b$. (5)

Let $x_1 = ab$, and $x_2 = \cdots = x_k = e$ in (1), by (5) we obtain

$$ab = ab\omega_1(e, \dots, e) = \omega_2(ab, e, \dots, e)e = (ab)^2(ab)^{|\omega_2|_{x_1}-2}.$$

Similarly, we get

$$a-b=(a-b)\omega_1(e,\cdots,e)=\omega_2((a-b),e,\cdots,e)e=(a-b)^2(a-b)^{|\omega_2|_{x_1}-2}$$

Consider $(ab)(ab)^{|\omega_2|_{x_1}-2}=(ab)^{|\omega_2|_{x_1}-2}(ab)$ and $(a-b)(a-b)^{|\omega_2|_{x_1}-2}=(a-b)^{|\omega_2|_{x_1}-2}(a-b)$. Then $ab \in R_1$ and $a - b \in R_1$.

For $a \in R_1$ and $r \in R$, by (3) there exist r_1 in N and r_2 in R_1 such that $r = r_1 + r_2$. Then

$$ra = (r_1 + r_2)a = r_1a + r_2a = r_2a \in R_1,$$

 $ar = a(r_1 + r_2) = ar_1 + ar_2 = ar_2 \in R_1.$

Hence R_1 is an ideal. This completes the proof of the theorem.

We conclude this note with the following

Corollary [2] Let R be a ring. Suppose that for all x, y in R, there exists an integer n = n(x,y) > 1 such that $x^n y = xy^n$. Then (i) N forms an ideal of R; (ii) $R = N \oplus R_1$, where R_1 is isomorphic to a subdirect sum of fields. In particular, if N is commutative, then R is commutative.

Proof For all x, y in R, by hypothesis there exist integers m = m(x, y) > 1 and n = m(x, y) > 1n(x, y) > 1 such that

$$x^n y = xy^n$$
 and $(x^n)^m y = x^n y^m$.

Then $x^{mn}y = x^ny^m = x^nyy^{m-1} = xy^{m+n-1}$.

Since the equation mn = m + n - 1 has no integer solutions such that m > 1 and n>1, there exist distinct integers s=s(x,y)>1 and t=t(x,y)>1 such that $x^sy=xy^t$. Then, the proof of corollary is now complete by Theorem.

References

- [1] M. Hasanali and A. Yaqub, Commutativity of rings with constraints on nilpotents and nonnilpotents, Internat. J. Math. & Math Sci., 12(3)(1989), 467-471.
- [2] H.E. Bell, A commutativity study for periodic rings, Pacific J. Math., 70(1977), 29-36.

一类环的结构

郭修展 魏兵 杨勇国 (中国矿业大学数力系,徐州221008)

摘 要

设R是一结合环, N表示R的所有幂零元形成的集合. 本文证明了:

定理 如果环R满足条件: 对于任意 $x_1, \dots, x_k \in R$, 存在依赖于 x_1, \dots, x_k 的字 $\omega_1 = \omega_1(x_2, \dots, x_k) \text{ as } \omega_2 = \omega_2(x_1, \dots, x_{k-1}) \text{ if } \mathbb{E} |\omega_1|_{x_k} > 1, |\omega_2|_{x_1} > 1, \text{ as } |\omega_1| \neq |\omega_2|, \text{ if } \omega_1 = \omega_1(x_2, \dots, x_k) \text{ as } \omega_2 = \omega_2(x_1, \dots, x_{k-1}) \text{ if } \mathbb{E} |\omega_1|_{x_k} > 1, |\omega_2|_{x_1} > 1, \text{ as } |\omega_1| \neq |\omega_2|, \text{ if } \omega_2 = \omega_2(x_1, \dots, x_{k-1}) \text{ if } \mathbb{E} |\omega_1|_{x_k} > 1, |\omega_2|_{x_1} > 1, \text{ as } |\omega_1| \neq |\omega_2|, \text{ if } \omega_2 = \omega_2(x_1, \dots, x_{k-1}) \text{ if } \mathbb{E} |\omega_2|_{x_1} > 1, |\omega_2|_{x_1} > 1, \text{ as } |\omega_1| \neq |\omega_2|_{x_1} > 1, \text{ as } |\omega_2|_{x_1} > 1, |\omega_2|$ 得 $x_1\omega_1(x_2,\cdots,x_k)=\omega_2(x_1,\cdots,x_{k-1})x_k$, 这里k>1是一固定整数,则(i)N 形成R 的 理想; $(ii)R = N \oplus R_1$, 这里 R_1 同构于一些域的次直和. 特别地, 如果N 是交换 的,则R也是交换的.