半值环的两个交换结果

黎奇升 (吉首大学数学系、湖南416000)

要 摘

定理1 设R 是半值环, n 为固定的正整数, 如果R 满足条件: $\forall x,y \in R$, 存在依 赖于x,y 的两个字k(X,Y),t(X,Y), 其中 $|k|_X>1$, $|t|_X=1$, $|k|_Y\geq |t|_Y$, $|t|_Y\leq n$, 使 $k(x,y)-t(x,y)\in I(R)$, 则R 是交换环.

定理2 设R 是半值环,如果R 满足条件: $\forall x,y \in R$, 存在正整数m = m(x,y) > 1, n = n(y), 使得 $(x^n y)^m - x^n y \in I(R)$, 则 R 是交换环.

Two Commutativity Results for Semiprime Rings *

Li Qishen
(Dept. of Math., Jishou University)

Abstrict In this paper, we study commutativity conditions for semiprime rings by means of words in non-commutative indeterminates X and Y, and obtain two commutativity results

Keywords semiprime rings, Jacobson radicals, quasiregular.

Throughout this paper, R will represent an associative ring (may be without unity) with center Z(R), J(R) the Jacobson radical of R. We say k(X,Y) a word in non-commutative indeterminates X and Y if k(X,Y) has the following form

$$k(X,Y) = X^{i_1}Y^{j_1}X^{i_2}Y^{j_2}\cdots X^{i_m}Y^{j_m}$$

where $i_s \ge 0$, $j_s \ge 0$, s = 1, 2, ..., m, $\sum_{s=1}^{m} (i_s + j_s) > 0$. We also write $|k|_X$ for $\sum_{s=1}^{m} i_s$, $|k|_Y$

for $\sum_{s=0}^{m} j_s$ and |k| for $|k|_X + |k|_Y$.

In 1986, Quadri, Ashraf and Khan [5] proved that a semiprime ring R satisfying $(xy)^2 - xy \in Z(R)$ for all $x, y \in R$ is commutative. In this direction Guo Xiuzhan [4] proved the following.

Theorem Let R be a semiprime ring satisfying $(x^m y)^n - x^m y \in Z(R)$ for all $x, y \in R$, where m, n are fixed positive integers, n > 1, then R is commutative.

In this paper, we prove the following.

Theorem 1 Let R be a semiprime ring satisfying that for each $x, y \in R$, there exist two words k(X,Y) and t(X,Y) depending on x, y, with $|k|_X > 1$, $|t|_X = 1$, $|k|_Y \ge |t|_Y$, $|t|_Y \le n$, where n is a fixed positive integer, such that

$$k(x,y)-t(x,y)\in Z(R),$$

then R is commutative.

Theorem 2 Let R be a semiprime ring satisfying that for each $x, y \in R$, there exist two

^{*}Received July. 11, 1992.

positive integers m = m(x,y) > 1, n = n(y) such that $(x^n y)^m - x^n y \in Z(R)$, then R is commutative.

For the proofs of Theorem 1, 2, we need some lemmas.

Lemma 1^[1] Let R be a semiprime ring, $0 \neq a \in Z(R)$ and $x \in R$. If $ax \in Z(R)$, then $x \in Z(R)$.

Lexima 2^[2] Let R be a ring satisfying that for any $x \in R$, there exists a polynomial p(t) with integral coefficients such that $x^2p(x) - x \in Z(R)$, then R is commutative.

Lemma 3^[3] If R has a non-zero nil one-sided ideal with a limited index, then R has a non-zero nilpotent ideal.

Lemma 4^[4] If R has an ideal I which has no non-zero nilpotent elements, such that R/I and I are both commutative, then R is commutative.

Proof Let $M = \{x \in R | IxI = (0)\}$. Since I has no non-zero nilpotent elements and $MI \subseteq I$, $(M \cap I)^2 \subseteq MI$, $(MI)^2 = (0)$, we have $M \cap I = (0)$.

Let $x, y \in R$, R/I is commutative by assumption, hence $xy - yx \in I$. On the other hand, for any $a, b \in I$, we have axyb = ybax = aybx = bayx = ayxb. Hence $xy - yx \in M$. It follows that xy = yx for all $x, y \in R$.

Lemma 5 Let R be a ring satisfying the condition of Theorem 1. If J(R) = (0) then R is commutative.

Proof Because R is isomorphic to a sub-direct sum of primitive rings, and the condition of Theorem 1 is inherited by homomorphic images. It is clear that it suffices to prove Lemma 5 with assumption that R is a primitive ring.

Suppose R is not a division ring, it follows from the density theorem for primitive rings that there exists a homomorphism of a subring of R onto a complete matrix ring Δ_2 over a division ring Δ . Let $x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then $k(x,y) - t(x,y) \notin Z(R)$ for all words k(X,Y) and t(X,Y) with $|k|_X > 1$, $|t|_X = 1$. Hence R is a division ring. For each $x \in R$, put y = 1. It follows from the condition of Theorem 1 that there exists a integer m = m(x) > 1 such that $x^m - x \in Z(R)$. By Lemma 2, R is commutative.

Lemma 6 Let R be a prime ring satisfying the hypothesis of Theorem 1, then R has no non-zero nilpotent elements.

Proof If J(R) = (0), then R is commutative by Lemma 5. Hence R has no non-zero nilpotent elements. Suppose $J(R) \neq (0)$, if Z(R) = (0), then for each $x \in J(R)$ we have

$$|x|^{|t|}(1-x^{|k|-|t|})=x^{|t|}-x^{|k|}=0,$$

but $x^{|k|-|t|}$ is qusi-regular. Hence

$$x^{|t|}=0, \quad |t|\leq n+1.$$

This means J(R) is non-zero nil ideal with limited index. It follows from Lemma 3 that R has a non-zero nilpotent ideal, but R is a prime ring, this is impossible. Hence $Z(R) \neq (0)$.

Let $x \in R$, $x^2 = 0$. Take $0 \neq a \in Z(R)$, then there exist two words k(X,Y) and t(X,Y) with $|k|_X > 1$, $|t|_X = 1$ such that

$$-a^{|t|_Y}x=k(x,a)-t(x,a)\in Z(R).$$

By Lemma 1 and $a^{|t|_Y} \neq 0$, we have $x \in Z(R)$. Hence x = 0.

Lemma 7 Let R be a prime ring satisfying the hypothesis of Theorem 2, then R has no non-zero nilpotent elements.

Proof Let $a \in R$ such that $a^2 \neq 0$. By hypothesis we have $-(ax)^n a = [(ax)^n a]^m - (ax)^n a \in Z(R)$ for all $x \in R$, where n = n(a) is only dependent on the element a. Thus, $(ax)^{n+2} = 0$.

If $aR \neq 0$, then R has a non-zero nilpotent ideal by Lemma 3, which contradicts to the fact that R is a prime. Thus, aR = 0, hence aRa = (0), this implies that a = 0.

Proof of Theorem 1 It suffices to show that a prime ring R satisfying the hypothesis of Theorem 1 is commutative.

If J(R) = (0), then Theorem 1 is correct by Lemma 5. Suppose $J(R) \neq (0)$. Let $x \in J(R)$, $x \neq 0$, then there exist two words k(X,Y) and t(X,Y) depending on x, with |k| > |t| such that $\lambda = x^{|k|} - x^{|t|} \in Z(R)$. It is clear $\lambda \neq 0$ by Lemma 6. For x, λ , there exist two words $k_1(X,Y)$ and $t_1(X,Y)$ with $|k_1|_X > 1$, $|t_1|_X = 1$, $|k_1|_Y \geq |t_1|_Y$ such that $\lambda^{|k_1|_Y} x^{|k_1|_X} - \lambda^{|t|_Y} x \in Z(R)$. It follows from Lemma 1 that

$$\lambda^{|k_1|_Y - |t_1|_Y} x^{|k_1|_X} - x \in Z(R).$$

Thus, J(R) is commutative by Lemma 2. Since R/J(R) is commutative, we have R is commutative by Lemma 4.

Using Lemma 1, 2, 3, 4, 7, we can prove Theorem 2 in a similar way.

Corollary 1 Let R be a semiprime ring and m a fixed integer, $m \geq 2$. If for each $x_1, x_2, \dots, x_m \in R$, there exists a integer $t = t(x_1, x_2, \dots, x_m) > 1$ such that $(x_{\sigma(1)}x_{\sigma(2)} \dots x_{\sigma(m)})^t - x_1x_2 \dots x_m \in Z(R)$, where $\sigma(1), \sigma(2), \dots, \sigma(m)$ is a permutation of $1, 2, \dots, m$, then R is commutative.

Corollary 2 Let R be a semiprime ring and s a fixed integer. If for each $x, y \in R$, there exists two integers m = m(x, y) > 1, $n = n(x, y) \ge s$ such that $(x^n y)^m - x^s y \in Z(R)$, then R is commutative.

References

- [1] V. Gupta, Acta Math. Acad. Sci. Hungar., 36(1980), 233-236.
- [2] I.N. Herstein, Amer. J. Math., 75(1953), 864-871.
- [3] Xie Bangjie, J. of Natural Science of Northeastern People's University, 1(1955), 13-14.
- [4] Guo Xiuzhan, J. of Mathematical Research and Exposition, 4(1991), 575-578.
- [5] M.A. Quadri, M. Ashraf and M.A. Khan, Bull. Austral. Math. Soc., 33(1986), 71-73.