FEPHIBNZRE R

- i
FEHRER¥E R, B 7 416000)

wm OB
EEL R B¥AAN, n FEAFWERE WRR WELM: Vz,y € R, TAEK
ﬁi?z»y B‘Jmlf‘gk(X,Y),t(X,Y), §:P|klx > 1) ItIX = 1: |le 2z 'tIY) lt[Y <n, ﬁE
k(z’ y) - t(xi y) € I(R)i FIUR %32&%

EE2 ®R B¥MNF, MRRWELKM Vz,y € R, FFEEEKmM = m(z,y) > 1,
n=n(y), f/(z"y)™ — 2"y € I(R), MR BIEZHK A
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Two Commutativity Results for Semiprime Rings
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Abstrict Inthis paper, we stidy commutativity conditions for semiprime rings by means
of words in non-commutative indeterminates X and Y, and obtain two commutativity
results.

Keywords semiprime rings, Jacobson radicals, quasiregular.

Throughout this paper, R will represent an associative ring (may be without unity)
with center Z(R),J(R) the Jacobson radical of R. We say k(X,Y) a word in non-
commutative indeterminates X and Y if k(X,Y) has the following form

k(X,Y)= X\1yi Xty 2., Xinyim,

m m
where1, > 0,7, >0,5s=1,2,...,m, Z(z’, + 75) > 0. We also write |k|x for Zi,, lkly

=1 8=1
m
for Y j, and |k| for |k|x + |k|y.

=1

In 1986, Quadri, Ashraf and Khan [5] proved that a semiprime ring R satisfying
(zy)? — zy € Z(R) for all z,y € R is commutative. In this direction Guo Xiuzhan [4]
proved the following.

Theorem Let R be a semiprime ring satisfying (z™y)* — z™y € Z(R) for all z,y € R,
where m,n are fized positive integers, n > 1, then R is commutative.
In this paper, we prove the following.

Theorem 1 Let R be d semiprime ring salisfying that for each z,y € R, there ezist
two words k(X,Y) and t(X,Y) depending on z,y, with |k|x > 1, |t|x = 1, |kly > |t]y,
[tly < n, where n 1s a fized positive integer, such that

k(I, y) - t(z)y) € Z(R))
then R 18 commutative.

Theorem 2 Let R be a semiprime ring satisfying that for each z,y € R, there exist two

*Received July. 11, 1992,

— 833 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



positive integers m = m(z,y) > 1, n = n(y) such that (z"y)™ - 2"y € Z(R), then R s
commautative.
For the proofs of Theorem 1, 2, we need some lemmas.

Lemma 111 Let R be a semiprime ring, 0 # a € Z(R) and z € R. If az € Z(R), then
z € Z(R).

Lexiima 212 Let R be a ring satisfying that for any z € R, there exists a polynomial p(t)
with integral coefficients such that z%p(z) — z € Z(R), then R is commutative.

Lemma 38! If R has a non-zero nil one-sided ideal with a limited indez, then R has a
non-zero nilpotent ideal.

Lemma 414 If R has an ideal I which has no non-zero nilpotent elements, such that R/I
and I are both commutative, then R is commautative.

Proof Let M = {z € R|IzI = (0)}. Since I has no non-zero nilpotent elements and
MICI, (MnI?CMI, (MI)? = (0), we have MN I = (0).
Let z,y € R, R/I is commutative by assumption, hence zy — yz € I. On the other
hand, for any a,b € I, we have azyb = ybaz = aybz = bayz = ayzb. Hence zy — yz € M.
It follows that zy = yz for all z,y € R.

Lemma 5 It R be a ring satisfying the condition of Theorem 1. If J(R) = (0) then R
18 commutative.

Proof Because R is isomorphic to a sub-direct sum of primitive rings, and the condition
of Theorem 1 is inherited by homomorphic images. It is clear that it suffices to prove
Lemma 5 with assumption that R is a primitive ring.

Suppose R is not a division ring, it follows from the density theorem for primitive rings
that there exists a homomorphism of a subring of R onto a complete matrix ring A over
0 é , Y = (1) (1) , then k(z,y) — t(z,y) & Z(R) for all
words k(X,Y) and"l-":(X,Y) with |k|x > 1, |t|x = 1. Hence R is a division ring. For each
z € R, put y = 1. It follows from the condition of Theorem 1 that there exists a integer
m = m(z) > 1 such that 2™ — z € Z(R). By Lemma 2, R is commutative.

a division ring A. Let z =

Lemma 6 Let R be a prime ring satisfying the hypothesis of Theorem 1, then R has no
non-zero nilpotent elements.

Proof If J(R) = (0), then R is commutative by Lemma 5. Hence R has no non-zero
nilpotent elements. Suppose J(R) # (0), if Z(R) = (0), then for each z € J(R) we have

]I‘Itl(l - zlkl-ltl) =zl — gl = o,
but z/*I~I* is qusi-regular. Hence
=0, [tj<n+1.

This means J(R) is non-zero nil ideal with limited index. It follows from Lemma 3 that R
has a non-zero nilpotent ideal, but R is a prime ring, this is impossible. Hence Z(R) # (0).
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Let z € R, 22 = 0. Take 0 # a € Z(R), then there exist two words k(X,Y) and
t(X,Y) with [k|x > 1, |t|x = 1 such that

—a¥ivz = k(z,a) - t(z,a) € Z(R).
By Lemma 1 and altlv # 0, we have z € Z(R). Hence z = 0.

Lemma 7 Let R be a prime ring satisfying the hypothesis of Theorem 2, then R has no
non-zero nilpotent elements.

Proof Let a € R such that a® # 0. By hypothesis we have —(az)"a = [(az)a]™ —
(az)*a € Z(R) for all z € R, where n = n(a) is only dependent on the element a. Thus,
(az)**? =0.

If aR # 0, then R has a non-zero nilpotent ideal by Lemma 3, which contradicts to
the fact that R is a prime. Thus, aR = 0, hence aRa = (0), this implies that a = 0.

Proof of Theorem 1 It suffices to show that a prime ring R satisfying the hypothesis
of Theorem 1 is commutative.

If J(R) = (0), then Theorem 1 is correct by Lemma 5. Suppose J(R) # (0). Let
z € J(R), z # 0, then there exist two words k(X,Y) and ¢(X,Y) depending on z, with
|k| > |t| such that A = z*| — zl!l € Z(R). It is clear A # 0 by Lemma 6. For z, ), there
exist two words k1(X,Y) and ¢;(X,Y) with |ki|x > 1, [t1|x = 1, |k1]y > |t1]y such that
MEly glkilx — ity 2 € Z(R). It follows from Lemma 1 that

Akl —itily glkslx _ 2 ¢ Z(R).

Thus, J(R) is commutative by Lemma 2. Since R/J(R) is commutative, we have R is
commutative by Lemma 4.
Using Lemma 1, 2, 3, 4, 7, we can prove Theorem 2 in a similar way.

Corollary 1 Let R be a semiprime ring and m a fixed integer, m > 2. If for each
Z1,Z3,**,Zm € R, there exists a integer t = t(z1,22, -+, 2m) > 1 such that (Zo(1)%o(2) "
Zo(m))! — T1Z2+* T € Z(R), where o(1),0(2),---,0(m) is a permutation of 1,2,---, m,

then R is commutative.

Corollary 2 Let R be a semiprime ring and s a fixed integer. If for each z,y € R, there
exists two integers m = m(z,y) > 1, n = n(z,y) > s such that (z"y)™ - z°y € Z(R), then
R is commutative.
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