I To get a regular GC! surface, the lengthes of vectors b; ; — b; and b;; — b; should
not be too long. It is better to chose b; ; and b;; such that

1
16i; = bill, 11856 — 5]l < §||Uj - .

II If we take {b;;, bj,;}e'.,jeg as an element in RV (the reason that we can do so is that
{bij — b}; € x; and {bj; — b;}; € x; are coplandr vectors, respectively), then

m(U E; ;) =0,

where N is the number of edges in A, mA is the measure of the collection A, and
Ei;:={XeR"W: J;(X):=Ji; =0, J;;is defined in (13)}. So the constraints
of the choosing of the control vectors {b;;,b;}, ;es are very mild.
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Abstract In this note we derive an interpolation scheme for constructing GC! surfaces
by cubic parameterized polynomials. This scheme can be used to construct GC! sur-
faces over the so called space meshes which are composed of space triangles and space
quadrangles. As a special case, it can be used to construct GC? surfaces over triangular
meshes. In addition, the results in this note was published as LETTERS in Chinese
Science Bulletin (Vol. 36, No. 20, Oct., 1991).

Keywords free surface, interpolant, space mesh.

1. Introduction

It is well-known that Surfaces in Computer Aided Geometric Design (SCAGD) is an
important branch of CAGD. It has wide-ranging applications, including the design of cars,
ships, aeroplanes, and many others objects, and the modeling of human organs and robots.
So this field is receiving more and more interests of scientists and many interesting results
have been obtained. For the results of this aspect the reader can read R.E. Barnhill’s
[1] survey. B.R. Piper obtained an interpolation scheme for constructing sufaces over a
triangular mesh by using quartic parameterized polynomials in the case of Clough-Tocher
split and he illustrated by an example that cubic polynomials are not enough to construct a
GC" interpolating surface to the given position data. Under the same conditions, however,
our result shows that cubic parameterized polynomials are sufficient to construct such a
surface under very mild constraints. At the same time, we have also considered the
construction of GC! surface on space quadrangles and furthermore, on a so called space
mesh which is composed of space triangles and space quadrangles. All polynomials in this
paper will be parameterized and vector valued, and they are represented in Bernstein-

Bezier form and we assume that the reader is familiar with the associated theory, sce G.
Farin [6].

“Received Sep. 9, 1992. The Project is Partly Supported by the Natrual Science Foundation of China
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We would like to point out here that the surfaces constructed in this paper interpolate
the given position vectors, and in correspondence to each given position vector these
surfaces take the given planes as their tangent planes. The scheme introduced in this paper
can be used to construct ball-like surfaces, closed surfaces and other regular surfaces.

We present a scheme of constructing GC! surfaces on a triangle by using cubic patches
in Section 2. The problem for constructing GC! surfaces on space quadrangles will be
discussed in Section 3. Finally, the method of constructing a global GC?! surface will be
described in Section 4.

2. GC! surfaces on a triangle

In this section, we will study the GC! joint of two polynomial patches on adjacent
triangles. Then we will consider the GC? joint of cubic patches on a triangle in the case
of Clough-Tocher split.

Definition 1 A collection A of vertices, edges, triangles and space quadrangles is called
a space mesh if it satisfies the following conditions:

1). If an edge, or a triangle, or a space quadrangle belongs to A, then all its faces are
again in A, respectively, and any vector or edge in A belongs to a triangle or a space
quadrangle in A.

2). The joint of any two elements in A is again in A and it is a common face of each.

8). For each edge e € A, it holds N(e) < 2, where N(e) is the sum of the numbers of
triangles and space quadrangles in A which take e as their a common edge.

4). Planar quadrangles in A are convez.

For an edge e € A, if there is only one triangle or space quadrangle with e as its
edge, then it is called a boundary edge; otherwise it is called an inner edge. A vertex of
a boundary edge is called a boundary vertex; otherwise if all the edges which take this
vertex as a common end-point are inner edges, then it is called an inner vertex. If a
triangle and space quadrangle or two triangles or two space quadrangles have a common
edge, then they are called adjacent elements. Two polynomial patches (or surfaces) are
called adjacent if they are on two adjacent elements, respectively.

In this paper, we will use the following formula

P(V) = Z (biu? +3 Z b,-lju?uj) + 6bsugujug (1)
i€l i#j€ls

to denote a cubic polynomial patch on a triangle § = [vg, v1, v}, where and throughout the
paper, I's = {i]v; is a vertex of 6}, bs, b;, b, ; € IR® are called control vectors, respectively,
and (ug, u1,uy) is the barycentric coordinates of v with respect to §.

Let 6, = [vo, v1,v2] and 8 = [vg, v1, vs] be two adjacent triangles. By

Pm(v) = Z (b,-u? +3 Z b,-'ju?u]-) + 6b5mu0u1u1+m (2)
i€T,,, i#j€ls,,
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we denote the cubic polynomial patch on 6,, (m = 1,2), respectively.
It is well known that the necessary and sufficient condition of GC! joint between P;(v)
and P;(v) is that the following condition holds for v € §; N &2

det(DO,IPI(U), Doszl(v), D0,3P2(v)) =0, (3)

where Dg;f = (v; — vg)- gradf is the directional derivative of f along vector v; —vp, X -Y
is the inner product of X and Y, and det A is the determinant of matrix A.
Especially, if for v € §; N §; and some real constants {o, 5},

(a1ug + B1u1) Do Pi(v) + (2o + B2u1) Do 2 Pi(v) + (asuo + Bau1)DosPa(v), (4)

then P;(v) and P;(v) is GC! joint, where (ug, u;) is the barycentric coordinates of v with
respect to vgvy = 6; N 62, and o4 and B; are notall zeros. It is easy to see that equation
(4) is only a sufficient condition of GC?! joint of Py(v) and P;(v).

According to equation (2), we have

Do1Pi(v) = 3((boa — bo)ud + 2(b1,0 — bo1)uour + (b1 — b10)ud),
Do2Pi(v) = 3((boz — bo)ul + 2(bs, — bo,1)uous + (b1,2 — byo)ul),
DosPi(v) = 3((bos — bo)ul + 2(bs, — bo,1)uous + (b1 3 — bio)ul).

Thus, equation (4) is equivalent to
ai(bo, — bo) + az(bo,2 — bo) + az(bos — bo) =0,
az(bs, — bo1) + as(bs, —bo1)+ A =0,
Bz(bs, — bo,1) + Bs(bs, — bo1) + B=0,
B1(b1 — by 0) + P2(br,2 — b1o) + Ps(bys — b1o) =0,
where A = ai(b1,0 — bo,1) + 3(B1(bo1 — bo) + B2(boz — bo) + B3(bos — bo)) and B =
Bi(bro—bo1) + %(al(bl —b10)aa(b1,1 — b1o) + as(b1,3 — b1,0)). According to equation (5),
we can set
a2 = |[|(bog — bo) x (bos ~bo)ll, a3 =I(bo,1 — bo) X (bo,2 — bo)l|,
Bz = |[(bro—b1) x (brs—b1)|l, Bs=|(bro— b1) x (b1,2 — b1)ll,

(5)

where || X|| is the I; norm of X, and X x Y is the vector produce of X and Y. If we assume

J = agfs — azfy #0, (6)

then according to (5), we have

1
bé1 = boy — (B34 — a3B), ™
652 = bO,l - 7(,52A - azB).
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In the following, we will discuss the GC! joint of cubic patches on a triangle which is
divided into three subtriangles by Clough-Tocher split.
Let § = [v;,v2,v3] be a triangle, and vg be its barycenter, and

Pm(U) = z (biu::n,.' +3 E bi,jufnlium,j) + 6b6,,. Um, 0Um,m+1Um,m+2
i€ls,, i#£5€ls,,

be the cubic patch on the triangle 6, = [vo, Vm+1, Vm+2}, respectively, where vy = vy, v5 =
vz and (%m0, Ym,m+1, Um,m+2) i8 the barycentric coordinates of v = U, gUo+Um,m+1Vmt1+
Um m+2Vm+2 With respect to 6,,, respectively.

According to equation (3), if there are some positive constants {a!,8!}?_; such that
for v € ;41 N G 42,

D;oPiy2(v) — o;D; i+1Pis2(v) — BiDiiy2Pig1(v) =0, 1 <1< 3, (8)

then P, Pls, = P; (i = 1,2,3), is a GC! smooth surface on §, where 843 = &, Ps+; = Pi.
Sililary, equation (8) is equivalent to

bipo — b = af(biit1 — bi) + Bi(bii+2z — bi)

boi — bio = aj(bs;,, — bio) + Bi(bs;,, —bio) 1<i<3, (9)
bo — boi = a{(boi+1 — o) + Bi(bosi+2 — bos)

= bs,.

If we set of = B! = 3’ then equation (9) is equivalent to

where b;34; = b; ; and bs;sa

bio = 3(bi+ bii+1 + biit2),
bO,l' = %(bi,o + b6;+1 + b6;+g)) 1 < ! < 3 (10)
bo = %(50,1 + bo,2 + bo3).

So we can construct a GC! surface on a triangle § by using three cubic patches as the
following:

I. The control vectors {b.-,bg,.~+1,b,-,,-+2,b3'.}?=1 are chosen arbitrarily.

II. The other control vectors are determined by equation (10).

In this section we will discuss how to construct a GC?! surface on a space quadrangle
§ = [v1,v2,v3,v4] with cubic patches, where, in fact, a surface on § we mean a surface
defined on the following surface

Q: Y :={(z,y,2) = f(a,b), 0<a,b<1},
where f(a,b) = (1 - a)(1 — b)v1 + a(1 — b)vz + (1 — a)bus + abvq.
By Qo = [A1, A2, A3, A4] = [0,1] ® [0, 1] we denote the reference square, where A; =
(0,0),A2 = (1,0),A3 = (l, 1),A4 = (0, 1), then
f: Qo—Q
(a,b) — (z,9,2) = f(u,v)
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is a one-to-one mapping from Qg ontc Q. Therefore, we only need to discuss how to derive
a GC! surface on the reference square Qq. We subdivide Qo into four triangles by joining
A1Asz and Az Ay, respectively, and by Ao we denote the intérsection point of A;As and
AzAy4.

Similarly, by

Pm(v) = Z (biugn,i +3 Z bi,jusn,.'um,j) + 6b6,,. U 0Um m+1Um,m+2
= i#j€ls,

we denote the cubic patch on the triangle 8§, = [Ao, Am, Am+1], m = 1,2,3,4, re-
spectively, where As = Aj, and (um0,Ym m+1, Um,m+2) 1S the barycentric coordinates of
V= Up0A0 + UnmmAm + dm,m+1Am+1 with respect to 6,,, respectively.

According to equation (3), if there exist some positive constants {o, 8I'}%_; such that
for v e é; N b3,

DioPi(v) = of D; i41P;(v) + B{ Ds iysPiys(v), 1<i<4, (11)

then P, Pls, = P;,is a GC! surface on é, where P;;4 = P; and Dijyaf =D;;fifg> 1.

1 . .
If we set o] = ' = 2 then equation (11) is equivalent to

[ R

bip = = (bii+1+ bijita),

1 .
bOi = E(bﬁ.' + b6i+3) 1<1<4., (12)

1
bo = Z(bo,l +bo2 + bos + bo,4),

So we can construct a GC! surface on a triangle § by using four cubic patches as follows
I. The control vectors {b;,b; ;+1,bi:+2,bs,}i_, are chosen arbitrarily.
II. The other control vectors are determined by equation (12).

4. GC! surfaces on a space mesh

In this section, we will discuss the constructing of GC! surfaces on space meshes as
defined in Section 1 by cubic patches.

We assume that corresponding to each vertex v; € A, a position vector b; and a plane
m; are given, respectively. We will construct a GC! surface on A, P, say, such that b; € P
and such that #; is the tangent plane of P at b;.

By P; we denote the GC! surface on a triangle element or on a quadrangle clement
6 € A obtained in Section 2 or Section 3, respectively. Thus, a surface P, P|s = Ps, on the
space resh is oblained. For v; € A, it holds b; € P. Therefore, we only need to derive the
conditions for P being a GC! surface and the conditions for #; being the tangent plane of
P at b;.

For two adjacent surfaces P, and P;,, without loss of generality, we assume that é;
and 6, are two triangle elements in A, § = [v1,vs,v2 +1] (1 =1,2), e = §; N &2, and that
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I To get a regular GC! surface, the lengthes of vectors b; ; — b; and b;; — b; should
not be too long. It is better to chose b; ; and b;; such that

1
16i; = bill, 11856 — 5]l < §||Uj - .

II If we take {b;;, bj,;}e'.,jeg as an element in RV (the reason that we can do so is that
{bij — b}; € x; and {bj; — b;}; € x; are coplandr vectors, respectively), then

m(U E; ;) =0,

where N is the number of edges in A, mA is the measure of the collection A, and
Ei;:={XeR"W: J;(X):=Ji; =0, J;;is defined in (13)}. So the constraints
of the choosing of the control vectors {b;;,b;}, ;es are very mild.
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