projection, that is, ||R|| = 1. This is in constradiction with the definition of Y. So Y is
not coproximinal. O

Theorem 3.4 Let X be a Banach space. Then the following statements are equivalent.

(1) For each 1-dimensional subspace Y of X, the linear selectiun of Ry 1s unign-.

(2) X 1is smooth.

Proof (1) = (2). For any zo € X and ||zo|| = 1, let Y = [74]. By Theurem 2.4, Ry has
a linear selection R. Let M = kerR. By Theorem 2.1, Pp; has a linear selection P and
Pzo = 0. By a Theorem of [2], there exists a f € X, such that f(zo) = |[f]| = ||zo]] = 1
and, for each y € M, f(y) = 0. So f is a peak functional. Suppose f; is'a peak functional
of zo also. By the proof of Theorem 2.4, there exists a linear selection fo such that
kerfo = kerRy. By condition, we have R = Ry. So kerf = kerf, .Hence there exists a
number o such that o] =1 and f = afy. It follows @ = 1 from 1 = f(z0) = fo(zo) = .
So X is smooth.

(2) = (1). Suppose Y is an l-dimensional subspace of X such that Ry has linear
selection R; (i=1,2). Let Y = [zo] where ||zo|| = 1. By the proof of (1) = (2), there
exist peak functionals f; of zg such that kerf; = kerR;. Since X is smooth, f; = f2. So
ker Ry = kerR;. Hence Ry = R,. a
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A Remark on Coapproximation
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Abstrict In this paper, we show that the cometric projection Ry admits a linear
selection when Y is 1-dimensional or 1-codimensional and a finite dimensional subspace
of a Banach space may be non-coproximinal.

Keywords coxpproxmntron, cometric projectron, coChebyshev.

1. Introduction

Let Y be a subspace of a normed linear space X. The cometric (resp. metric) projection
onto Y is the set-valued mapping Ry : X + 2Y (resp. Py : X — 2%) defined by, for each
z€e X,

Ry(z)={y€Y; forevery g€VY, and {g—y|l <|lz-gll}

(resp.
Py(z) = {yeV; forevery geV,|lz—vy| <]z~ gll}-)

Y is called coproximinal (resp. coChebyshev) if Ry (z) contains at least (resp. exactly)
one point for each z € X. Y is called proximinal (resp. Chebyshev) if Py(z) contains at
least (resp. exactly) one point for each z € X.

Suppose Fy : X — 2Y is a set-valued mapping. A linear selection for Fyis a linear map
F : X — Y such that F(z) € Fy(z) for every z € X. It is easy to verify that every linear
selection for Py is a projection operator and the linear selection for Ry is a constractive
projection operator in usual sense.

The kernel of Ry (resp. Ry) is the set defined by kerRy = {z € X; & Ry(z)}. (resp.
kerPy = {z € X; 0€ P(z)}).

In [5], when Y is a coChebyshev subspace, G.S.Rao has put in that Ry is linear if and
only if ker Ry contains a subspace N of X such that X =Y @ N.

The purpose of this paper is to consider the linear selection for Ry when Y is 1-
dimensional or 1-codimensional.

In section 3, we give an application of the Theorem 2.4. We prove that, for any integer
n > 2, there exist a Banach space X and an n-dimensional subspace Y of X such that Y is
non-coproximinal. It is well known that, in best approximation, if Y is a finite dimensional

“Received Aug. 10, 1992. Supported by the Ntional Science Foundation of P.R. China.
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subspace then Y is proximinal. This fact can not be extened in best coapproximation.
2. Linear selections

The following Theorem expresses a relation between the best approximation and best
coapproximation.

Theorem 2.1 Let X be a Banach space. Suppose Y 1s a coproziminal subspace and Ry
admits a linear selection R. Then M = {z € X; Rz = 0} 1s proziminal and P =1d -~ R
18 a linear selection of Pyy wnere id 1s the identily operator on X.

If M is a proximinal subspace of X and Pas admits a linear selection P, then Y =
{z € X; Pz =0} is coproximinal and R = ¢d — P is a linear selection of Ry.

Proof Suppose z € X. For any y € M, since Ry = 0, for each g € Y, |lg]| < |ly — gll-
Let y=y— Prand g =z - Pz = Rx. Thenyy€ M and g € Y and

|z = Pz|| < [lyo = (z = Pz)|| = [l= - yll,

i.e. Pz € Py(z). So M is proximinal and P is a linear selection of Pay.

Suppose P is a linear selection of Ppy and Y = {z € X; Pz =0}. Let R =1d — P.
We need only td show that Rz € Ry (z) for each z € X. For each g inY, since Pg = 0,
forany ye M, |lg|| <|lg—vyl|- Let 9o =9g— Rz =g—z— Prand y= —Pz. Thengo €Y
and y € M. Thus

llg = Rzl = llgoll < llgo — vll = llg — =l = ||z — gl|.
So Y is coproximinal and R is a linear selection. 0

Theorem 2.2 LetY be a subspace of a linear normed space X and Y be coproziminal.
Then Ry admits a linear selection if and only if there exists a closed subspace N C kerRy
such that X =Y @ N.

Remark When Y is coChebyshev subspae, G.S.Rao (5] has proved the similar result.
Proof (=). Let R be a linear selection and
N =kerR={z € X; Rz=0}.

It is obvious that N C kerRy. Since R is a projection operator and Y = R(R), we have
X=Y@N.

(<=). If there exists a subspace N C kerRy such that X = Y @ N, let R(y +n) =y
where y € Y and n € N. Then R is a projection operator. It is enough to show R(z) €
Ry (z) for each £ € X.. Suppose z = y+n. Since 0 € Ry(n),forany g€ Y, ||gll < |[n—g].
So, for any g € Y,

lig =yl <lln~(g-9ll=lz-gl,
that is, y € Ry (z). )

This Theorem is similar to the case in best approximation, which was proved by

F.Deutsch [3]. In words, Ry has a linear selection if and only if ¥ has a complement in
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kerRy.
It is $imilar to the case in best approximation, we have the following Proposition.

Proposition Let Y be a coproximinal subspace. Then kerRy is a subspace if and only
if Y is coChebyshev and Ry is linear.
As applications of Theorem 2.2,, we have the following Theorems.

Theorem 2.4 IfY i3 a coproziminal hyperplane of a Banach space X, then Ry admits
a linear selection.

Proof Let z € X\Y. Suppose go € Ry(z). Let zo = = — go. It is obvious that
[zo] Y = X. Forany g€ Y,
llgll = ll(g + 90) — goll < llz = (g + goll = l|(z — g0) — gll-
So 0 € Ry(zo). It is evident that
(20 C {z € X; 0 R(z)).
By theorem 2.2, Ry admits a linear selection. O

Theorem 2.5 IfY be an 1-dimensional subspace of a Banach space X, then Y 1is
coproziminal and Ry admits a linear selection.

Remark We shall see, in section 3, that, for any integer n > 2, there exist a Banach
space X and an n-dimensional subspace Y of X such that ¥ is non-coproximinal.

Proof Let zo € X such that ||zo]| =1 and Y = [z¢]. Suppose f is a peak functional of
zo. Let M = {z € X; f(z)=0}. Foreachz€ X, thenyy=2— f(z)zo €Y.
For any y€ M,
iz = yoll = 1f(2)] = |f(z = 9)] < fl= -yl
So yo € Pa(z). It is obvious that Pz = z — f(z)z¢ is linear. So P is a linear selection
of Pps. By Theorem 2.1 and 2.2, the Y = {z € X; Pz = 0} = [zo] is coproximinal and
R =1d — P is a linear selection of Ry. O

3. The non-existence of best co-approximation and the uniqueness of
linear selections.

We will need to use the following Theorem.

Theorem 3.1 (J.Lindenstrauss & L.Tzafriri, [1]) Let X =1,, for some 1 < p<oco,p#2
and let P be a projection of norm 1 in X. Then there exist vector {u;}[%, of norm 1 in X
(where m = dimR(P) is either an integer or co) which satisfies supp(u;) N supp(u;) = 0
so that Pz = 3 7, ui(z)u;, where {u}} C X* satisfy

”U:”:u:(u;):l, 1=1,2,---,m.

It is well known that, in best approximation, if Y is a finite dimensional subspace of
a linear normed space X, then Y is proximinal. However, this fact is not truth in best
coapproximation. In fact, we have the following propositions.
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For any set A, cardA will denote the cardinality of A. Also, if z is a function defined
on some set T', the support of z is the set

supp(z) = {t € T; z(t) # 0}.

Let {X)}xeca be a family of Banach spaces and 1 < p < co, we denote by (P, cx X2)p

the space
{f:a= U Xn; 2 IFOIP < oo}

A€A

endowed the norm

171 = 132 I PP

AEA

Proposition 3.2 For any n > 3, there exist an n-dimensional Banach space X and a
hyperplane Y of X such that, for any projection P, if R(P) =Y, then ||P|| > 1.

Proof Fixap,1<p<ocandp#2 Let X=1,(n) and

Y ={zeX; ix(k) = 0}.
k=1

Then codimY = 1. If there exists a constractive projection P such that R(P) =Y. Define
the projection. Q as, for any z € I, (Qz)(k) = 0 when k > n and (Qz)(k) = z(k) when
k < n. It is evident that PQ is a constractive projection defined on [, and R(PQ) =Y.
By Theorem 3.1, there exist {z;} C X of norm 1 such that supp(z;)-N supp(z;) = @ and
Y = (@®}z1[zi]), where [z] = span{z}. If there exists an 1 such that card[supp(z;)] = 1,
assume supp(z;) = ko. Then =z;(ky) # 0 and z;(5) = 0 for each 7 # ko. But z; € Y, by
definition, 0 = }F_; z;(k) = z;(ko). This is in constradiction with z(k) # 0. So we get
card[supp(z;)] > 2 for any 1. Since the sets supp(s;) are disjoint and n > 3, we get

n—1
U supp(a) = supp(3" ),
k=1
and
n—1
card[ | J supp(z¢)] > 2(n — 1) > n.
k=1
This is in constradiction with the Y221z € 1,(n). Thus, for any projection P, if R(P) =
Y, then ||P]| > 1. |

Proposition 3.3 For each integer n > 2, there exist a Banach space X and an n-
dimensional subspace Y such that Y is non-coproximinal.

Proof. By the proposition 3.2, there exist an n + 1-dimensional Banach space X and
a hyperplane Y of X such that , for any projection P, if R(P) =Y, then ||P|| > 1. By
Theorem 2.4, if Y is coproximinal,then Ry has a linear selection R and R is a constractive
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projection, that is, ||R|| = 1. This is in constradiction with the definition of Y. So Y is
not coproximinal. O

Theorem 3.4 Let X be a Banach space. Then the following statements are equivalent.

(1) For each 1-dimensional subspace Y of X, the linear selectiun of Ry 1s unign-.

(2) X 1is smooth.

Proof (1) = (2). For any zo € X and ||zo|| = 1, let Y = [74]. By Theurem 2.4, Ry has
a linear selection R. Let M = kerR. By Theorem 2.1, Pp; has a linear selection P and
Pzo = 0. By a Theorem of [2], there exists a f € X, such that f(zo) = |[f]| = ||zo]] = 1
and, for each y € M, f(y) = 0. So f is a peak functional. Suppose f; is'a peak functional
of zo also. By the proof of Theorem 2.4, there exists a linear selection fo such that
kerfo = kerRy. By condition, we have R = Ry. So kerf = kerf, .Hence there exists a
number o such that o] =1 and f = afy. It follows @ = 1 from 1 = f(z0) = fo(zo) = .
So X is smooth.

(2) = (1). Suppose Y is an l-dimensional subspace of X such that Ry has linear
selection R; (i=1,2). Let Y = [zo] where ||zo|| = 1. By the proof of (1) = (2), there
exist peak functionals f; of zg such that kerf; = kerR;. Since X is smooth, f; = f2. So
ker Ry = kerR;. Hence Ry = R,. a
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