projection, that is, ||R|| = 1. This is in constradiction with the definition of Y. So Y is not coproximinal.

Theorem 3.4 Let X be a Banach space. Then the following statements are equivalent.

- (1) For each 1-dimensional subspace Y of X, the linear selection of Ry is unique.
- (2) X is smooth.

Proof (1) \Rightarrow (2). For any $x_0 \in X$ and $||x_0|| = 1$, let $Y = [\tau_0]$. By Theorem 2.4, R_Y has a linear selection R. Let $M = \ker R$. By Theorem 2.1, P_M has a linear selection P and $Px_0 = 0$. By a Theorem of [2], there exists a $f \in X_*$ such that $f(x_0) = ||f|| = ||x_0|| = 1$ and, for each $y \in M$, f(y) = 0. So f is a peak functional. Suppose f_0 is a peak functional of x_0 also. By the proof of Theorem 2.4, there exists a linear selection f_0 such that $\ker f_0 = \ker R_0$. By condition, we have $R = R_0$. So $\ker f = \ker f_0$. Hence there exists a number α such that $|\alpha| = 1$ and $f = \alpha f_0$. It follows $\alpha = 1$ from $1 = f(x_0) = f_0(x_0) = \alpha$. So X is smooth.

(2) \Rightarrow (1). Suppose Y is an 1-dimensional subspace of X such that R_Y has linear selection R_i (i=1,2). Let $Y = [x_0]$ where $||x_0|| = 1$. By the proof of (1) \Rightarrow (2), there exist peak functionals f_i of x_0 such that $\ker f_i = \ker R_i$. Since X is smooth, $f_1 = f_2$. So $\ker R_1 = \ker R_2$. Hence $R_2 = R_2$.

References

- [1] J. Lindenstrauss & L. Tzafriri, Classical Banach spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
- [2] I. Singer, Beat approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- [3] F. Deutsch, Linear selections for the metric projections, J. Func. Anal., 49 (1982), 269-292.
- [4] S. Elumalai, Best coapproximation in normed linear spaces, Methods of Functional Analysis in Approximation Theory (C.A. Micchelli, D.V. Pai & B.V. Limaye, eds.) ISNM, 76 (1986), Birkhauser Verlag, Basel, pp.165-172.
- [5] G.S. Rao, Best coapproximation in a normed linear space, in "Approximation Theory 5" (e.d., C.K. Chui, etc.), pp.535-538, Acadmic press, New York, 1986.
- [6] G.S. Rao & K.R. Chandrasekaran, The modulas of continuity of the set-valued cometric projection, Methods of Functional Analysis in Approximation Theory (C.A. Micchelli, D.V. Pai & B.V. Limaye, eds.) ISNM, 76 (1986), Birkhauser Verlag, Basel, pp.157-163.

关于余逼近的一点注记

宋 文 华 (大连理工大学数学科学研究所, 116024)

摘要

本文证明了1- 维子空间和余1- 维子空间是余可逼近的,且余度量射影有线性的选择, 并举出例子对任何维数不小于2 的有限维子空间未必是可余逼近的.

A Remark on Coapproximation *

Song Wenhua
(Inst. of Math. Science, Dalian Univ. of Tech., Dalian 116024)

Abstrict In this paper, we show that the cometric projection R_Y admits a linear selection when Y is 1-dimensional or 1-codimensional and a finite dimensional subspace of a Banach space may be non-coproximinal.

Keywords coxpproxmntron, cometric projectron, coChebyshev.

1. Introduction

Let Y be a subspace of a normed linear space X. The cometric (resp. metric) projection onto Y is the set-valued mapping $R_Y: X \mapsto 2^Y$ (resp. $P_Y: X \mapsto 2^Y$) defined by, for each $x \in X$,

$$R_Y(x) = \{y \in Y; \text{ for every } g \in Y, \text{ and } ||g - y|| \le ||x - g||\}$$

(resp.

$$P_Y(x) = \{y \in Y; \text{ for every } g \in Y, ||x - y|| \le ||x - g|| \}.$$

Y is called coproximinal (resp. coChebyshev) if $R_Y(x)$ contains at least (resp. exactly) one point for each $x \in X$. Y is called proximinal (resp. Chebyshev) if $P_Y(x)$ contains at least (resp. exactly) one point for each $x \in X$.

Suppose $F_Y: X \mapsto 2^Y$ is a set-valued mapping. A linear selection for F_Y is a linear map $F: X \mapsto Y$ such that $F(x) \in F_Y(x)$ for every $x \in X$. It is easy to verify that every linear selection for P_Y is a projection operator and the linear selection for R_Y is a constructive projection operator in usual sense.

The kernel of R_Y (resp. R_Y) is the set defined by $\ker R_Y = \{x \in X; \in R_Y(x)\}$. (resp. $\ker P_Y = \{x \in X; 0 \in P(x)\}$).

In [5], when Y is a coChebyshev subspace, G.S.Rao has put in that R_Y is linear if and only if $\ker R_Y$ contains a subspace N of X such that $X = Y \oplus N$.

The purpose of this paper is to consider the linear selection for R_Y when Y is 1-dimensional or 1-codimensional.

In section 3, we give an application of the Theorem 2.4. We prove that, for any integer $n \ge 2$, there exist a Banach space X and an n-dimensional subspace Y of X such that Y is non-coproximinal. It is well known that, in best approximation, if Y is a finite dimensional

^{*}Received Aug. 10, 1992. Supported by the Ntional Science Foundation of P.R. China.

subspace then Y is proximinal. This fact can not be extende in best coapproximation.

Linear selections 2.

The following Theorem expresses a relation between the best approximation and best coapproximation.

Theorem 2.1 Let X be a Banach space. Suppose Y is a coproximinal subspace and Ry admits a linear selection R. Then $M = \{x \in X; Rx = 0\}$ is proximinal and P = id - Ris a linear selection of P_M where id is the identity operator on X.

If M is a proximinal subspace of X and P_M admits a linear selection P, then Y = $\{x \in X; Px = 0\}$ is coproximinal and R = id - P is a linear selection of R_Y .

Proof Suppose $x \in X$. For any $y \in M$, since Ry = 0, for each $g \in Y$, $||g|| \le ||y - g||$. Let $y_0 = y - Px$ and g = x - Px = Rx. Then $y_0 \in M$ and $g \in Y$ and

$$||x-Px|| \leq ||y_0-(x-Px)|| = ||x-y||,$$

i.e. $Px \in P_Y(x)$. So M is proximinal and P is a linear selection of P_M .

Suppose P is a linear selection of P_M and $Y = \{x \in X; Px = 0\}$. Let R = id - P. We need only to show that $Rx \in R_Y(x)$ for each $x \in X$. For each g in Y, since Pg = 0, for any $y \in M$, $||g|| \le ||g-y||$. Let $g_0 = g - Rx = g - x - Px$ and y = -Px. Then $g_0 \in Y$ and $y \in M$. Thus

$$||g - Rx|| = ||g_0|| \le ||g_0 - y|| = ||g - x|| = ||x - g||.$$

So Y is coproximinal and R is a linear selection.

Theorem 2.2 Let Y be a subspace of a linear normed space X and Y be coproximinal. Then R_Y admits a linear selection if and only if there exists a closed subspace $N \subseteq \ker R_Y$ such that $X = Y \oplus N$.

Remark When Y is coChebyshev subspace, G.S.Rao [5] has proved the similar result.

Proof (\Rightarrow) . Let R be a linear selection and

$$N = \ker R = \{x \in X; Rx = 0\}.$$

It is obvious that $N \subseteq \ker R_Y$. Since R is a projection operator and Y = R(R), we have $X = Y \oplus N$.

 (\Leftarrow) . If there exists a subspace $N \subseteq \ker R_Y$ such that $X = Y \oplus N$, let R(y+n) = ywhere $y \in Y$ and $n \in N$. Then R is a projection operator. It is enough to show $R(x) \in$ $R_Y(x)$ for each $x \in X$. Suppose x = y + n. Since $0 \in R_Y(n)$, for any $g \in Y$, $||g|| \le ||n - g||$. So, for any $g \in Y$,

$$||g-y|| \le ||n-(g-y)|| = ||x-g||,$$

that is, $y \in R_Y(x)$.

This Theorem is similar to the case in best approximation, which was proved by F.Deutsch [3]. In words, R_Y has a linear selection if and only if Y has a complement in ker Ry.

It is similar to the case in best approximation, we have the following Proposition.

Proposition Let Y be a coproximinal subspace. Then $kerR_Y$ is a subspace if and only if Y is coChebyshev and R_Y is linear.

As applications of Theorem 2.2,, we have the following Theorems.

Theorem 2.4 If Y is a coproximinal hyperplane of a Banach space X, then R_Y admits a linear selection.

Proof Let $x \in X \setminus Y$. Suppose $g_0 \in R_Y(x)$. Let $x_0 = x - g_0$. It is obvious that $[x_0] \bigoplus Y = X$. For any $g \in Y$,

$$||g|| = ||(g+g_0)-g_0|| \le ||x-(g+g_0)|| = ||(x-g_0)-g||.$$

So $0 \in R_Y(x_0)$. It is evident that

$$[x_0] \subseteq \{x \in X; 0 \in R(x)\}.$$

By theorem 2.2, R_Y admits a linear selection.

Theorem 2.5 If Y be an 1-dimensional subspace of a Banach space X, then Y is coproximinal and R_Y admits a linear selection.

Remark We shall see, in section 3, that, for any integer $n \geq 2$, there exist a Banach space X and an n-dimensional subspace Y of X such that Y is non-coproximinal.

Proof Let $x_0 \in X$ such that $||x_0|| = 1$ and $Y = [x_0]$. Suppose f is a peak functional of x_0 . Let $M = \{x \in X; f(x) = 0\}$. For each $x \in X$, then $y_0 = x - f(x)x_0 \in Y$. For any $y \in M$,

$$||x-y_0||=|f(x)|=|f(x-y)|\leq ||x-y||.$$

So $y_0 \in P_M(x)$. It is obvious that $Px_i = x - f(x)x_0$ is linear. So P is a linear selection of P_M . By Theorem 2.1 and 2.2, the $Y = \{x \in X; Px = 0\} = [x_0]$ is coproximinal and R = id - P is a linear selection of R_Y .

3. The non-existence of best co-approximation and the uniqueness of linear selections.

We will need to use the following Theorem.

Theorem 3.1 (J.Lindenstrauss & L.Tzafriri, [1]) Let $X = l_p$, for some $1 , <math>p \neq 2$ and let P be a projection of norm 1 in X. Then there exist vector $\{u_i\}_{i=1}^m$ of norm 1 in X (where $m = \dim R(P)$ is either an integer or ∞) which satisfies $\sup (u_i) \cap \sup (u_j) = \emptyset$ so that $Px = \sum_{i=1}^m u_i^*(x)u_i$, where $\{u_i^*\} \subseteq X^*$ satisfy

$$||u_i^*|| = u_i^*(u_i) = 1, \quad i = 1, 2, \dots, m.$$

It is well known that, in best approximation, if Y is a finite dimensional subspace of a linear normed space X, then Y is proximinal. However, this fact is not truth in best coapproximation. In fact, we have the following propositions.

For any set A, cardA will denote the cardinality of A. Also, if x is a function defined on some set T, the support of x is the set

$$supp(x) = \{t \in T; x(t) \neq 0\}.$$

Let $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of Banach spaces and $1\leq p<\infty$, we denote by $(\bigoplus_{{\lambda}\in\Lambda}X_{\lambda})_p$ the space

$$\{f: \Lambda \mapsto \bigcup_{\lambda \in \Lambda} X_{\lambda}; \sum \|f(\lambda)\|^p < \infty\}$$

endowed the norm

$$||f|| = \left[\sum_{\lambda \in \Lambda} ||f(\lambda)||^p\right]^{1/p}.$$

Proposition 3.2 For any $n \ge 3$, there exist an n-dimensional Banach space X and a hyperplane Y of X such that, for any projection P, if R(P) = Y, then ||P|| > 1.

Proof Fix a p, $1 and <math>p \neq 2$. Let $X = l_p(n)$ and

$$Y = \{x \in X; \sum_{k=1}^{n} x(k) = 0\}.$$

Then codim Y=1. If there exists a constractive projection P such that R(P)=Y. Define the projection Q as, for any $x \in l_p$, (Qx)(k)=0 when k>n and (Qx)(k)=x(k) when $k \leq n$. It is evident that PQ is a constractive projection defined on l_p and R(PQ)=Y. By Theorem 3.1, there exist $\{x_i\} \subseteq X$ of norm 1 such that $\sup(x_i) \cap \sup(x_j) = \emptyset$ and $Y=(\bigoplus_{k=1}^{n-1}[x_i])_p$ where $[x]=\sup\{x\}$. If there exists an i such that $\operatorname{card}[\sup(x_i)]=1$, assume $\sup(x_i)=k_0$. Then $x_i(k_0)\neq 0$ and $x_i(j)=0$ for each $j\neq k_0$. But $x_i\in Y$, by definition, $0=\sum_{k=1}^n x_i(k)=x_i(k_0)$. This is in constradiction with $x(k)\neq 0$. So we get $\operatorname{card}[\sup(x_i)]\geq 2$ for any i. Since the sets $\sup(x_i)$ are disjoint and $n\geq 3$, we get

$$\bigcup_{k=1}^{n-1} \operatorname{supp}(x_k) = \operatorname{supp}(\sum x),$$

and

$$\operatorname{card}[\bigcup_{k=1}^{n-1}\operatorname{supp}(x_k)]\geq 2(n-1)>n.$$

This is in constradiction with the $\sum_{k=1}^{n-1} x_k \in l_p(n)$. Thus, for any projection P, if R(P) = Y, then ||P|| > 1.

Proposition 3.3 For each integer $n \geq 2$, there exist a Banach space X and an n-dimensional subspace Y such that Y is non-coproximinal.

Proof. By the proposition 3.2, there exist an n+1-dimensional Banach space X and a hyperplane Y of X such that, for any projection P, if R(P) = Y, then ||P|| > 1. By Theorem 2.4, if Y is coproximinal, then R_Y has a linear selection R and R is a constructive

projection, that is, ||R|| = 1. This is in constradiction with the definition of Y. So Y is not coproximinal.

Theorem 3.4 Let X be a Banach space. Then the following statements are equivalent.

- (1) For each 1-dimensional subspace Y of X, the linear selection of Ry is unique.
- (2) X is smooth.

Proof (1) \Rightarrow (2). For any $x_0 \in X$ and $||x_0|| = 1$, let $Y = [\tau_0]$. By Theorem 2.4, R_Y has a linear selection R. Let $M = \ker R$. By Theorem 2.1, P_M has a linear selection P and $Px_0 = 0$. By a Theorem of [2], there exists a $f \in X_*$ such that $f(x_0) = ||f|| = ||x_0|| = 1$ and, for each $y \in M$, f(y) = 0. So f is a peak functional. Suppose f_0 is a peak functional of x_0 also. By the proof of Theorem 2.4, there exists a linear selection f_0 such that $\ker f_0 = \ker R_0$. By condition, we have $R = R_0$. So $\ker f = \ker f_0$. Hence there exists a number α such that $|\alpha| = 1$ and $f = \alpha f_0$. It follows $\alpha = 1$ from $1 = f(x_0) = f_0(x_0) = \alpha$. So X is smooth.

(2) \Rightarrow (1). Suppose Y is an 1-dimensional subspace of X such that R_Y has linear selection R_i (i=1,2). Let $Y = [x_0]$ where $||x_0|| = 1$. By the proof of (1) \Rightarrow (2), there exist peak functionals f_i of x_0 such that $\ker f_i = \ker R_i$. Since X is smooth, $f_1 = f_2$. So $\ker R_1 = \ker R_2$. Hence $R_2 = R_2$.

References

- [1] J. Lindenstrauss & L. Tzafriri, Classical Banach spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
- [2] I. Singer, Beat approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- [3] F. Deutsch, Linear selections for the metric projections, J. Func. Anal., 49 (1982), 269-292.
- [4] S. Elumalai, Best coapproximation in normed linear spaces, Methods of Functional Analysis in Approximation Theory (C.A. Micchelli, D.V. Pai & B.V. Limaye, eds.) ISNM, 76 (1986), Birkhauser Verlag, Basel, pp.165-172.
- [5] G.S. Rao, Best coapproximation in a normed linear space, in "Approximation Theory 5" (e.d., C.K. Chui, etc.), pp.535-538, Acadmic press, New York, 1986.
- [6] G.S. Rao & K.R. Chandrasekaran, The modulas of continuity of the set-valued cometric projection, Methods of Functional Analysis in Approximation Theory (C.A. Micchelli, D.V. Pai & B.V. Limaye, eds.) ISNM, 76 (1986), Birkhauser Verlag, Basel, pp.157-163.

关于余逼近的一点注记

宋 文 华 (大连理工大学数学科学研究所, 116024)

摘要

本文证明了1- 维子空间和余1- 维子空间是余可逼近的,且余度量射影有线性的选择, 并举出例子对任何维数不小于2 的有限维子空间未必是可余逼近的.