G-Semilocal Rings and Homological Dimensions *

Yang Jinghua (China Pharmaceutical University, Nanjing 210009)

Abstract We discuss an extended class of the Semilocal rings which are called G-semilocal rings. For any G-semilocal ring R, the homological dimension of R has been derived by using the residue classes modulo $Soc(_RR)$ and $J(R) \cap Soc(_RR)$ respectively.

Keywords semilocal ring, homological dimension, Jacobson radical

Classification AMS(1991) 13D05, 16E10/CCL O153.3

1. G-Semilocal Rings

Throughout this paper, R always denotes an associative ring with an identity, and all modules are unital. For any ring R, S will denote $Soc(_RR)$ and J the Jacobson radical of R.

Let R be a ring, if $(I_{\alpha})_{\alpha \in A}$ is the set of all the minimal left ideal of R, then $S = \sum_{\alpha \in A} I_{\alpha}$. By [3,Lemma 9.2] there is a subset $B \subset A$ such that

$$S = (S \cap J) \bigoplus (\bigoplus_{\beta \in B} I_{\beta}), \tag{1}$$

clearly $I_{\beta}^2 = I_{\beta}$. If B is finite, then

$$S = (S \cap J) \bigoplus (\bigoplus_{i=1}^{n} I_i), \tag{2}$$

where $I_i^2 = I_i \in (I_\alpha)_{\alpha \in A}$.

Definition 1.1 A ring R is G-semilocal if there are minimal left ideals I_1, I_2, \dots, I_n such that $S = (S \cap J) \bigoplus_{i=1}^n (\bigoplus_{i=1}^n I_i)$, clearly $I_i^2 = I_i$.

Corollary 1.2 Let R be a ring, if all but a finite number of minimal left ideals of R are nilpotents, then R is a G-semilocal ring.

Proposition 1.3 Let R be a semilocal ring, then R is G-semilocal.

^{*}Received Oct.17, 1992.

Proof Let $\overline{R} = R/S \cap J$. We have that $S = (S \cap J) \oplus (\bigoplus_{\beta \in B} I_{\beta})$ and $I_{\beta}^2 = I_{\beta}$, thus

 $\overline{S} \cong \bigoplus_{\beta} \overline{I}_{\beta} I_{\beta}$. Since $\overline{R}/\overline{J} \cong R/J$ is semisimple, so is \overline{S} , it follows that B is a finite set and R is G-semilocal.

Lemma 1.4 Let R be any ring, $I = Re_1 \oplus Re_2$, where e_1 and e_2 are idempotents. If $e_2e_1 = 0$, then there is an idempotent e such that I = Re.

Proof Let $\pi \in \operatorname{Hom}_R(R,I)$ with $\pi(r) = r(e_1 + e_2)$. Since $\pi : Re_2 \longrightarrow Re_2$ and $\pi : R(1-e_2) \longrightarrow Re_1$, so that $\pi : R \to I$ is epimorphic. Let $M = \operatorname{Ker}\pi$, then there is an exact sequence $0 \to M \to R \xrightarrow{\pi} I \to 0$. Since $\pi : r(e_1 + e_2 - e_1e_2) \mapsto r(e_1 + e_2) \in I$, thus $r - r(e_1 + e_2 - e_1e_2) \in M$. So that for any $r \in R$, we have $r = [r - r(e_1 + e_2 - e_1e_2)] + r(e_1 + e_2 - e_1e_2)$, it follows that R = M + I. We shall now prove that $M \cap I = 0$. If $x \in M \cap I$, then there are $r_i(i = 1, 2)$ such that $x = r_1e_1 + r_2e_2$. It follows that $0 = \pi(x) = r_1e_1 + (r_1e_1 + r_2)e_2$, this implies $r_1 = r_2 = 0$, hence x = 0, we have thus proved that $M \cap I = 0$ and $R = M \oplus I$. The lemma follows by [3, Proposition 7.1].

Proposition 1.5 Let R be a G-semilocal ring and $S = (S \cap J) \oplus (\bigoplus_{i=1}^{n} I_i)$ with $I_i^2 = I_i$, then there is an idempotent e such that $Re = \bigoplus_{i=1}^{n} I_i$.

Proof Let $S_1 = \bigoplus_{i=1}^n I_i$. It is easy to show that there is a maximal left ideal M_i such that $R = I_i \oplus M_i$ for every I_i . If there is an $I_i(i > 1)$ with $I_i \not\subset M_1$, then we have $R = M_1 \oplus I_i$, put $I = I_1 \oplus I_i$, then $R = I + M_1$, it follows from [3, Lemma 9.2] that $I = (I \cap M_1) \oplus I_t(t = 1 \text{ or } i)$. Now let L_i denote $I \cap M_1$ and $L_1 = I_t$, then we get that $I = L_1 \oplus L_i$ with $L_i \subset M_1$, clearly $L_i = I \cap M_1$ is a minimal left ideal. If $L_i^2 = 0$, then $L_i \subset S \cap J$, so that $I_i \subset (S \cap J) \cap S_1$ and this contradicts that $S = (S \cap J) \oplus S_1$, thus $L_i^2 = L_i$. If $i \neq 1$, i, we let $i \neq 1$, i, then we can get that $i \neq 1$, with $i \neq 1$ and $i \neq 1$, where $i \neq 1$, where $i \neq 1$ and $i \neq 1$ are minimal left ideals with $i \neq 1$.

In general, for an index set $\{I_i, I_{i+1}, \dots, I_n\}(i > 1)$ with $I_j \subset M_{i-1}(1 \le j \le n)$. We note that $R = I_i \oplus M_i$, and if there is an $I_j(j > i)$ with $I_j \not\subset M_i$, then $R = M_i \oplus I_j$. Let $I = I_i \oplus I_j$, we get that $R = I + M_i$, it follows that $I = (I \cap M_i) \oplus I_t$ (t = 1 or j). Let L_j denote $I \cap M_i$ and $L_i = I_t$ then $I = L_i \oplus L_j$. By the proof as above it follows that $L_j^2 = L_j$ is a minimal left ideal. Also we note that $L_j \subset I = I_i \oplus I_j \subset M_{i-1}$.

Therefore, without loss of generality it may be assumed that there is an indexed set of minimal left ideal $\{L_1, L_2, \dots, L_n\}$ such that

(a) $S_1 = \bigoplus_{i=1}^n L_i$ and $L_i^2 = L_i (i = 1, 2, \dots, n)$; (b) $L_i \not\subset M_i$, $L_j \subset M_i$ for j > i. Since $R = L_i + M_i$, so that there is an idempotent $e_i \in L_i$ such that $L_i = Re_i$ and $M_i = R(1 - e_i)$, and it is clear that $M_i e_i = 0$, then $e_j e_i = 0 (j > i)$. It follows from Lemma 1.4 that there is an idempotent u_{n-1} such that $L_{n-1} \oplus L_n = Ru_{n-1}$. Since $u_{n-1} \in L_{n-1} \oplus L_n \subset M_{n-2}$, then $u_{n-1} e_{n-2} = 0$. Again, by Lemma 1.4, there is an idempotent u_{n-2} such that $Ru_{n-2} = L_{n-2} \oplus Ru_{n-1} = L_{n-2} \oplus L_{n-1} \oplus L_n$. By the same way to get $\bigoplus_{i=1}^n L_i = Re$ where $e = u_1$ is an idempotent. \square

2. Homological Dimensions

Theorem 2.1 Let R be a G-semilocal ring, S = Soc(RR) and J = J(R), then $l.gd(R/S) = l.gd(R/S \cap J)$ and $r.gd(R/S) = r.gd(R/S \cap J)$.

Proof Let $\overline{R} = R/S \cap J$, then by Proposition 1.5 there is an idempotent $e \in R$ such that $\overline{S} = \overline{R}\overline{e}$. Let $\overline{M} = \overline{R}(\overline{1} - \overline{e})$, then $\overline{R} = \overline{S} \oplus \overline{M}$.

We shall now prove that \overline{M} is also a two-sided ideal of \overline{R} . It is sufficient to show that $\overline{MS} = 0$, and then $\overline{MR} = \overline{M}(\overline{S} + \overline{M}) \subset \overline{MS} + \overline{M}^2 = \overline{M}^2 \subset \overline{M}$.

Let $\overline{MS} \neq 0$. Since $\overline{S} = \bigoplus_{i=1}^n I_i$, and $\overline{I}_i^2 = \overline{I}_i$ is a minimal left ideal for every i, then there is an \overline{I}_i such that $\overline{M}\overline{I}_i = \overline{I}_i$. We note that $\overline{SM} = 0$ and $\overline{S}\overline{I}_i = \overline{I}_i$, then

$$\bar{I}_i = \overline{S}\bar{I}_i = \overline{S}(\overline{M}\bar{I}_i) = 0 \cdot I = 0$$

which is a contradiction.

Now by [3, Proposition 7.6] it follows that $\overline{R} = \overline{S} + \overline{M}$ is a ring decomposition of \overline{R} . From [1.p.190] we have

$$\operatorname{l.gd}(\overline{R}) = \max\{\operatorname{l.gd}(\overline{S}), \operatorname{l.gd}(\overline{M})\}\ \text{ and } \operatorname{r.gd}(\overline{R}) = \max\{\operatorname{r.gd}(\overline{S}), \operatorname{r.gd}(\overline{M})\}.$$

Since $\overline{S} = \bigoplus_{i=1}^n I_i$ is semisimple, so that $l.gd(\overline{R}) = l.gd(\overline{M})$. We note that $\overline{M} \cong \overline{R}/\overline{S} \cong R/S$, then $l.gd(R/S \cap J) = l.gd(R/S)$. Similarly, we have $r.gd(R/S \cap J) = r.gd(R/S)$. This result implies immediately the following

Corollary 2.2 Let R be a semilocal ring, then

$$l.gd(R/S) = l.gd(R/S \cap J)$$
 and $r.gd(R/S) = r.gd(R/S \cap J)$.

Corollary 2.3 Let R be a G-semilocal ring, if $S \cap J = 0$ (particularly, when R is a semiprimitive ring), then l.gd(R/S) = l.gd(R) and r.gd(R/S) = r.gd(R).

Theorem 2.4 Let R be a G-semilocal ring, then $r.gd(R) \le r.gd(R/S) + l.fd_R(R/S)$.

Proof We know that J = J(R) annihilates all simple left ideals, then JS = 0. It follows that $S \cap J$ is a nilpotent ideal of R, then by [6, Theorem 1] we have

$$r.gd(R) \le r.gd(R/S \cap J) + l.fd_R(R/S \cap J).$$

We note that $r.gd(R/S \cap J) = r.gd(R/S)$ by Theorem 2.1. Let $\overline{R} = R/S \cap J$, then by proposition 1.5 there is an idempotent e such that $\overline{S} = \overline{R}\overline{e}$, then

$$\overline{R} = \overline{S} \oplus \overline{M}$$
 where $\overline{M} = \overline{R}(\overline{1} - \overline{e})$.

Since $\overline{S} \cong \bigoplus_{i=1}^n I_i$, and $I_i^2 = I_i$ is a minimal left ideal for every i, it is easy to get that $l.\operatorname{pd}_R I_i = 0$, then $l.\operatorname{pd}_R \overline{S} = 0$, and so that $l.\operatorname{fd}_R \overline{R} = l.\operatorname{fd}_R \overline{M} = l.\operatorname{fd}_R \overline{R} = l.\operatorname{fd}_R (R/S)$.

Remark In [6] Thomas has shown that for any ring R

$$l.gd(R) \le l.gd(R/S) + l.pd_R(R/S).$$

References

- [1] Zhou Boxun, Homological Algebra (Chinese), Science Press Beijing, 1988.
- [2] J.J.Rotman, An Introduction to Homological Algebra, Academic Press, 1979.
- [3] F.W.Anderson and K.R.Fuller, Rings and Categories of Modules, Springer, Berlin, Heidelbery, New York, 1974.
- [4] L.W.Small, A change of rings theorem, Proc. A.M.S., 19(1968), 662-666.
- [5] K.L.Fields, On the global dimension of residue rings, Pacific J. Math., 32(1970), 345-349.
- [6] J.C.Thomas, Homological dimension under of rings, Comm. Alg., 7(1979), 625-640.

G- 半局部环及其同调维数

杨静化 (中国药科大学数学教研室,南京210009)

要 摘

本文中讨论了一类比半局部环更广的环类,即G-半局部环.对G-半局部我们通过模 去环的左Socle 及Jacobson 根,研究了环的同调维数,并得到 $Gd(R/S) = Gd(R/S \cap J)$, 式中的Gd 表示环R 的左整体维数或右整体维数,S = Soc(RR) 以及J 是环R 的Jacobson 根. 当R 还是半本原环时,即得Gd(R/S) = Gd(R).