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G-Semilocal Rings and Homological Dimensions *
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(China Pharmaceutical University, Nanjing 210009)

Abstract We discuss an extended class of the Semilocal rings which are called G-
semilocal rings. For any G-semilocal ring R, the homological dimension of R has been
derived by using the residue classes modulo Soc{z R) and J{R) N Soc(p R) respectively.
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1. G-Semilocal Rings

Throughout this paper, R always denotes an associative ring with an identity, and all
modules are unital. For any ring R, S will denote Soc(gr R) and J the Jacobson radical of
R.

Let R be a ring, if (I4)aca 1s the set of all the minimal left ideal of R, then S =
2-aca Ia- By [3,Lemma 9.2] there is a subset B C A such that

S =(SNI) PP ), (1)

HeB
clearly Ig = Ig. If B is finite, then

S =(SJ)PED x), (2)

=1
where I? = I; € (In)aca.

Definition 1.1 A ring R is G-semilocal if there are minimal left ideals I, I, - -+, I, such

that S = (SnJ) @(@ L), clearly It = I;.

Corollary 1.2 Let R be a ring, if all but a finite number of minimal left ideals of R are
nilpotents, then R is a G-semilocal ring.

Proposition 1.3 Let R be a semilocal ring, then R is G- semilocal.
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Proof Let R = R/S N J. We have that S = (SN J)® (@ Ig) and I} = Ig, thus
seB
S = @ fﬁ Ig. Since R/J = R/J is semisimple, so is S, it follows that B is a finite set and

R is G-semilocal.

Lemma 1.4 Let R be any ring, I = Re; @ Rey, where ey and ey are idempotents. If
ese; = 0, then there is an idempotent e such that I = Re.

Proof Let # € Hompg(R,I) with n(r) = r(e; + e2). Since # : Reg —» Rez and = :
R(1 — e2) —» Rey, so that 7 : R — I is epimorphic. Let M = Kern, then there is an exact
sequence 0 = M — R 5 I — 0. Since 7 : r(e; + ez —e1e9) > r(e;+e) € I, thus r—r(e; +
ez —ere3) € M. So that for any r € R, we have r = [r—r(e; + ez — eye2)] +r(e1 + €3 — e1e2),
it follows that R = M + I. We shall now prove that M NI =0. If z € M N I, then there
are r;(¢+ = 1,2) such that z = rye; + rze;. It follows that 0 = n(z) = rie; + (r1e1 + r2)eq,
this implies r{ = ro = 0, hence £ = 0, we have thus proved that MNI/ =0and R=M® 1.
The lemma follows by [3,Proposition 7.1].

Proposition 1.5 Let R be a G-semilocal ring and S = (SN J)® (&™) with It = L,
then there is an idempotent e such that Re = @}, I;.

Proof Let S, = ®,I;. It is easy to show that there is a maximal left ideal M; such
that R = I; & M; for every I;. If there is an L(i > 1) with I; ¢ M, then we have
R=M@®®IL, put I =1 &I, then R = I+ M,, it follows from [3, Lemma 9.2] that
I=({INM)® I,(t =1o0ri). Now let L; denote I N M, and L, = I, then we get that
I =L, ® L; with L; C My, clearly L; = I N Mj is a minimal left ideal. If L? = 0, then
L; ¢ SN J, so that I; ¢ (SN J)N S, and this contradicts that S = (SN J) & S;, thus
Lf = L;. If j # 1,4, we let L; = I;, then we can get that S = &]_;L; with L; ¢ M, and
L; ¢ My( for + > 1), where L;(5 = 1,2,-+-,n) are minimalleft ideals with L? =1L;.

In general, for an index set {I;, [ix1, -+, In}{t > 1) with I; ¢ M;_;(1 < 7 < n). We
note that R = I; & M;, and if there is an I;(j > 1) with I; ¢ M;, then R = M; & I;. Let
I =1l we get that R = I + M;, it follows that I = (INM;)® I; (t =1 or ). Let
L; denote I M M; and L; = I; then I = L; ® L;. By the proof as above it follows that
L? = L; is a minimal left ideal. Also we note that L; C I = L; & I[; C M;_;.

Therefore, without loss of generality it may be assumed that there is an indexed set
of minimal left ideal {Ly, Ly,- -, L,} such that

(a) S1=o" L;and L} = L;(1 = 1,2,--+,n); (b) L; ¢ M;,L; C M; for j > i.

Since R = L; + M;, so that there i1s an idempotent e; € L; such that L; = Re; and
M; = R(1 — ¢;), and it is clear that Ae; = 0, then e;e; = 0(y > 7). It follows from
Lemma 1.4 that there is an idempotent u,_; such that L, & L, = Ru,_;. Since
Un_1 € Lp_1 ® L, C M,_2, then u,_je,-2 = 0. Again, by Lemma 1.4, there is an
idempotent u,_s such that Ru, 3 = L, 2® Ru,.1 = Ly, 2® L,_1 ® L,,. By the same
way to get ® ; L; = Re where e = u; is an idempotent. [

2. Homological Dimensions



Theorem 2.1 Let R be a G-semilocal ring, S = Soc(gR) and J = J(R), then
l.gd(R/S) =1gd(R/SNJ) and r.gd(R/S)=r.gd(R/SNJ).

Proof Let R = R/SNJ, then by Proposition 1.5 there is an idempotent e € R such that
S=Reé. Let M =R(1-¢),then R=S @ M.

We shall now prove that M is also a two-sided ideal of R. It is sufficient to show that
S = 0, and then MR = M(S + M) ¢ MS + M* = M* M.

Let MS # 0. Since S = ®™,;, and I? = I; is a minimal left ideal for every 1, then
there is an I; such that MI; = I;. We note that SM = 0 and SI; = I;, then

L=3L=S(MI)=0-I=0
which is a contradiction.

Now by (3, Proposition 7.6] it follows that R = S + M is a ring decomposition of R.
From [1.p.190] we have

1.gd(R) = max{l.gd(S), 1.gd(M)} and r.gd(R) = max{r.gd(S), r.gd(M)}.
Since § = @, I; is semisimple, so that L.gd(R) = l.gd(M). We note that M = R/S =
R/S, then l.gd(R/S N J) = l.gd(R/S). Similarly, we have r.gd(R/S N J) =r.gd(R/S).
This result implies immediately the following

Corollary 2.2 Let R be a semilocal ring, then
l.gd(R/S) =1.gd(R/SNJ) and r.gd(R/S) =r.gd(R/S N J).

Corollary 2.3 Let R be a G-semilocal ring, if S N J = 0 (particularly, when R is a
semiprimitive ring), then L.gd(R/S) = l.gd(R) and r.gd(R/S) = r.gd(R).

Theorem 2.4 Let R be a G-semilocal ring, then r.gd(R) < r.gd(R/S) + l.fdr(R/S).

Proof We know that J = J(R) annihilates all simple left ideals, then JS = 0. It follows
that S N J is a nilpotent ideal of R, then by |6, Theorem 1] we have

r.gd(R) < r.gd(R/S N J)+1idg(R/S N J).

We note that r.gd(R/SNJ) = r.gd(R/S) by Theorem 2.1. Let £ = R/S N J, then by
proposition 1.5 there is an idempotent e such that S = Ré, then

R=S®M where M = R(1 - &).
Since S = @, L, and I? = I; is a minimal left ideal for every 1, it is easy to get that

Lpdgl; = 0, then LpdxS = 0, and so that L.dg R = L{dxM = L1d(R/3) = Lidr(R/S).
Remark In [6] Thomas has shown that for any ring R
L.gd(R) < 1.gd(R/S) + L.pdg(R/S).
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