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A Remark on Multivariate Polynomial Interpolations *
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Abstract C.deBoor and A.Ron in [1] proposed a map © — Ily which associates each
finite set © in complex s-space with a polynomial space Ily from which interpolation to
arbitrary data given at the points in © is possible and uniquely. In this paper we describe
the constructing methods of some other polynomial spaces @ from which interpolation
at © is uniquely possible. This method is utilized to construct some nonconforming finite
elements (cf.[3,4]) with good convergence.

Keywords Interpolation, finite element.

Classification 41A05, 65D05, 65N30/CCL 0241.5

1. Introduction

The recent work of Z.C. Shi and S.C. Chen (see, e.g., [2] and references therein) serves
as a good example for the explanation of nonconforming finite clements. They showed that
the nine parameters of quasi-conforming plate clement are the point valuation of shape
function and first derivatives with some disturbance of O(h?), and presented the explicit
expressions of those nine parameters. Their conclusions result in the fact that most of
nonconforming plate elements can be explained as the polynomial interpolations as well as
the conforming elements. From this new point of view, the construction of nonconforming
finite element is also the interpolation problem of polyncmials with some complicated
interpolation conditions (which are viewed as the sufficient conditions for convergence of
finite elements) and the subspaces of polynomials from which interpolation is uniquely
possible.

The generalization of univariate polynomial interpolation to the multivariate context
is made difficult by the fact that it has to be decided just which of the many of its nice
properties to preserve, since it is impossible to preserve them all. In [1], C.deBoor and
A.Ron took a differeut task. Given any finite set @ C R’, they determined a corresponding
polynomial space @ from which interpolation to function values and derivatives at © is
“correct”, 1.e., is possible and uniquely so. Such a basic idea can be used to construct
nonconforming finile elements which have good convergent properties.

This paper gencralizes the conclusions of C.deBoor and A.Ron in [1] The generalization
can be used for the construction of nonconforming finite elements in a better way.
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The following notation and terminology are used throughout. The collection of all
polynomials on C' is denoted by n; 7, denotes the collection of all those polynomials of
total degree < k, i.e., m; := span(()*),|a| < k, with ()* : £ — z®. For any p € w, we
denote by p(D) the corresponding constant coefficient differential operator; in particular,

=TI, (D)~ (7} with D; a differentiation with respect to the jth argument. We make

good use of the representation of the linear functional [0]p(D) on 7 as ¢ — p*E’q = ¢*(esp),
with
¢'p:=(q(D Z D%¢(0)D%p(0)/a!,
with e; : = — exp((0,z)), with E the shift, i.c., E°f = f(- + 0), and with [0} f := f(0).
2. Baic interpolation problems

Let H and A be finite dimensional linear subspaces of a linear space X (over C or R)
and its dual X', respectively. Abstractly, interpolation from I can be described as the
task of finding, for given f € X, an h € H for which Ah = Af for all A in A. We call A the
(space of) interpolation conditions for this particular interpolation problem (H,A). We
call the problem correct if there is, for each f, exactly one solution h form H.

A space A of linear functions is total for H if the only h € H for which Ah = 0 for all
A€ Ais h=0. Then we have the following basic lemma.

Lemma 2.1 Let H and A be finite demensional linear subspaces of a linear space X and
its dual, respectively. Then the following are equivalent:

(2) The interpolation problem (H,A) given by H and A is correct.

(b) With ();){, any basis for A, the linear map Ty : h — (A;h)] is one-one and onto.

(c) A is minimally total for H.

(d) A can be used to represent the dual H' of H in the sense that the map Fy : A — Ay
is one-one and onto. '

For polynomial interpolation problem we are interested in the case where X is the
space, Ag, of all functions analytic at the origin with the topoclogy of formal power series
Concretely, we are interested in using linear functionals of the form

L f - (p(D)f ZDQ 0) - D* J(0)/a! (2.1

with p € 7. These are continuous linear functionals on Ay aud even on some Ck(O). The
map p — p° is skew linear and onc-to-one, hence provides a skew-linear embedding of #
in the dual of Ag.

We will consider interpolation by polynomials using interpolation conditions of the
form [0]p(D) with [f] the linear functional of point evaluation of § and p a polynomial.
More precisely, let ©,(1 = 1,2,---,n) € C' be n linite scts and associate cach point 8 in
©; with a polynomial pg. We want to interpolate {rom some polynomial spuce @, using
the interpolation conditions

= A(©y,--+,0,) = span{ Z [0]ps(D) :i=1,2,---,n} (2.2)

cO;
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For the analysis of this problem, observe that, in term of (2.1), for any ® = 6; andgqe «

(X _[61pe(D))a=D_[0lps(D)q = D> ¢ (eors) = ¢" Y _ (espo) (2.3)

6O fcO O fco

This implies that our interpolation problem, as specified by Q and A = A(8,,---6,,)
is correct if and only if the dual problem of interpolation from H := span{}_,cq,(€sps) :
1 =1,---,n} with interpolation condition Q" is correct. Now H is a subspace of Ag and Q
is a subspace of palynomial to be determined. For interpolation problem (H,a*)Q* can
be used to represent the dual H' of H and conversely so, in terms of (d) of Lemma 2.1.
Hence finding Q for original interpolation problem (@, A) is equivalent to determining H',

the dual of H.
3. Methods for constructing H'

For a function (or polynomial) f analytic at the origin, let f; be the homogencous
polynomial of degree 7 for which

f(z) = f1(z) + olfz]}") as £ — 0 (3.1)
Consequently, with 7 := deg f| .
fu=lim f(t)/00
For any subspace H of Ag, we first consider the pclynomial space

H, :=span{f,: fc H} (3.2)

Proposition 3.1 For any finite-dimensional lincar subspace H of Ag, the linear space
HI = {p* : p€e H,} can be used to represent dual of H.

Proof For any f € H\O,p:= f; € H| and 3" f = p"p > 0. This implies that the only
feHwithp f=0forallpe Hjis f =0, ie, Hl is total for H. On the other hand,
since dim HI = dim J1; = dim /, on proper subspace of ﬁl could be total for H. That
1s, HI is mimmadly total for H and then proposition is valid in terms of Lemma 2.1.

Let hy, -+, hn & H be a basis of /] with dim H = n(or in general H = span; ;<. {hi}),

then for any h <= ¥, there exist ¢y, -+, ¢,-1 and ¢y, such that
h = Clh.l + Czhz + - Cnhn = Z La(Cl, e ,Cn) . Ia (33)
a
where Ly(c1, -+, cn) is the linear form of ¢y, -+, cn.

Proposition 3.2 There exist an integer mg such that

mq

Hl = @{ Z La(cl,...’cn)xa . La((:l).")cn) e 0 With Ial < j}

i= al=g
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Proof We just note that the element of H can be identified by the first nonzero ho-
mogeneous polynomial in its Taylor expansion and H is finite dimensional subspace of
AO.

Let mg be the integer in Proposition 3.2. For any given integer J > mg define H(J) =
span{T;f : f € H} with T;f the Taylor polynomial of degree < J for f at the origin, i.e.,

T,7= 3 2p%s(0) (3.4

jal<J

For any f #0in H we have Ty f* - f =T f*T;f > 0. This implies that only f € H with
p'f =0forall pe H(J)is f = 0. Hence we can conclude the following

Proposition 3.3 The linear space (H(J)) is minimally total for II and
mqg J

H(J)= ®{ Z Lo(ey, - ,cn)x® : Lo(er,- -, cn) = 0 with || < 7}

7=0 lal-_—j

Denote L;(J) = {z{al=i La(cr,-+-,e0)z® @ Lo(c1,---,¢n) = 0 with |o|] < j} and
H|(J) = @;'E’O—ILJ-(J)J' ® Lpy,(J). We are now in a position to state following impor-

tant proposition.

Proposition 3.4 For any given integer J > m;, we have the following statements:
(a) H,(J)" is also minimally total for H and dim H,(J) = dim H. In particular,
Hl(mo) = Hl'
(b) dlm(Hl(mo) M 7l'k) > dlm(Hl(mo + 1) N 7l'k) > dlm(IIl(mo + 2) M 7(k) > Vi,
(c) The linear space H (J)* can be used to represent the dual of H.
Proposition 3.4 provides the following conclusions.

Theorem 3.5 Let H = span{Y_sce, €sps : 1 = 1,2,---,n}. Then H; with J > mg(mq can
be determined in terms of proposition 3.2) is a polynomial space from which interpolation
with interpolation condetions A(©1,---,0,) = span{}_sce [0lps(D) : + = 1,---,n} is
correct.

4. Some examples

Example 4.1 As a simple illustration, consider s = 1. For 81 = {z;}, A = span{{z¢] +
[xo) - D,{z1]}. Then the corresponding H = {c1(1 + z)e®™?® + c2€"1% : ¢y, c2 € R}
(a) Forzy #1429, H; = {c1 + 22 : ¢c1,¢2 € R},mg = 1. For J > myg
1
(z3(z0 + 3)

1
IIl(J) = {Cl + Cz((.’ro +1- 2?1):1: + 5(:1:0(2:0 + 2) - I%)Iz +

1
:]—i(a:g_l(xo +J) -z{)z’ i ¢e1,e2 € R}

(b) For zy =1+ zo,H| = {c1 + caz? i c1,c2 € R},mg =2. For J > mg

_z:i‘)z:* 4oee

H() = {a+el-32 + 5l - 1)}z +2) - )’

1
Heee 7i((r_p;l — 1)"_1(11 +J - 1) — a:‘ll)z") icy,c € R}
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By Theorem 3.5, we have that for any given data «; and ay there exists only one polyno-

mial p(z) € H{(J) such that

P(Io) + p’(IO) = Q3 and p(:z:l) = a3

Example 4.2 Let s = 2. Let K be the triangle with vertices at (z1,vy1), (z2,¥2), (z3, y3)
in R%. The mine parameters of Zienkiewicz’s finite element is the following.

v(:c,-,y,-),v,,(:r;,y,-),v,,(x,—, yi'))i = 1> 21 3. (41)

In [5], the shape function space (or interpolation polynomial space) was given. Here
we can give another nine-dimensional polynomial space with can be viewed as a new
shape function space of Zienkiewicz’s finite plate elements. For simplicity we just take
(z1,91) = (0,0), (z2,y2) = (1,0), and (zs3,y3) = (0,1) as an example. For the general case,
please refer to [3]. Now we have

A= Span{[mi) yi]; [Ii) yi] . PI(D), [Ii) yi] ' pZ(D)al =12, 3}
with pi1(z,y) = z and p3(z,y) = y, then the corresponding
H = span{e®®T¥¥ geZi®tViV ye=iZtvi¥ ;-1 2 3}

where (z1,y1) = (0,0),(z2,y2) = (1,0) and (z3,y3) = (0,1).
By Theorem 3.5, we can prove that

H=r® {c12® 4 ca(2%y — zy?) + c3y® 1 c1,¢2,¢3 € R}, mp = 3

Moreover, for example

1 1 1
Hi(4) = m® {e1(2® + 514) + co(zy — zy® + Ezsy — gzys)

1
+63(y3 + §y4) 1 ¢y,c3,c3 € R}

Then we have that H| and H|(4) are shape function space of Zienkewicz’s finite element
over K.
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