Preconditioning Method Based on Incomplete Decomposition for Nonsymmetric Systems*

Huang Kaibin

(Dept. of Math., Nanjing Normal University, Nanjing 210024)

Wu Jier

(Dept. of Basic Courses, East China Shipbuliding Institute, Zhenjiang 212003)

Vorst [2] discussed the incomplete decomposition of A or/and $A + A^T$ in combination with some iterations to solve a large nonsymmetric system of linear equations

$$Ax = b, \quad A = (a_{ij}) \in R_n^{n \times n}, \quad A \neq A^T. \tag{1}$$

Here we present an incomplete decomposition of A and construct a preconditioning method for solving (1). Assume that A is also a nonsingular M-matrix, then there hold

$$A = K - R, \quad K = (L + \bar{D})\bar{D}^{-1}(U + \bar{D}), \quad \text{diag}(A) = \text{diag}(K),$$
 (2)

where L and U are strictly lower (upper) triangular parts of A, respectively. If $\bar{D}^{-1} > 0$, applying it for preconditioning (1), we have the equivalent system $\bar{A}x = \bar{b}$, with $\bar{A} = \bar{D}^{-1}A$, $\bar{b} = \bar{D}^{-1}b$. Here \bar{A} is also an M-matrix, hence we have

$$\bar{A} = (\bar{L} + I)(\bar{U} + I) - \bar{R}, \quad \bar{L} = \bar{D}^{-1}L, \quad \bar{U} = \bar{D}^{-1}U.$$
 (3)

Take $(\bar{L}+I)^{-1}$ as a left preconditioner for $\bar{A}x=\bar{b}$, we have the preconditioned system

$$\hat{A}\hat{x} = \hat{b}, \quad \hat{A} = (\bar{L} + I)^{-1}\bar{A}(\bar{U} + I)^{-1}, \quad \hat{x} = (\bar{U} + I)x, \quad \hat{b} = (\bar{L} + I)^{-1}b.$$
 (4)

Theorem Assume that both A and $A + A^T$ are nonsingular M-matrices, then all eigenvalues of \hat{A} lie in a circle with centre (1,0) and radius less than 1.

The conclusion of the theorem is more specific than that of [1,2] and will still be valid if A is a nonsingular M-matrix and $\bar{D}^T > 0$.

Corollary GCR(k) and the Chebyshev iteration for (2) converge to the solution of (1).

References

- [1] H.A. Vander Vorst (1981), J. of Comp. Physics, 1-19.
- [2] H.A. Vander Vorst (1988), J. of Comp. and Appl. Math., 73-78.

^{*}Received Sep.17, 1992. Supported by the Natural Science Foundation of China.