Theorem 5 If P(z) is defined by (4.1), then

$$\sup_{|y| \le \frac{1}{2}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{1 - \cos ty}{t^{2r} |P(it)|^2} dt \right\}^{1/2} \le \bar{d}_{\sigma}(W_1^r(P), L^2)$$

$$\le E(W_1^r(P), B_{\pi\sigma}^2, L^2) \le \sup_{y \in \mathbb{R}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{(1 - \cos ty) dt}{t^{2r} |P(it)|^2} \right\}^{1/2}.$$

References

- [1] N.I.Achieser, Theory of Approximation, New York, 1956.
- [2] Chen Dirong, Average n-widths and optimal interpolation of Sobolev class in $L_p(\mathbb{R})$, Chinese Ann. Math., 13B:4(1992), 396-405.
- [3] Chen Dirong, On the cardinal spline interpolation corresponding to an infinite order differential operator, Acta Math. Sinica, New Series, 10:3(1994), 315-324.
- [4] Z.Din, The average ε-dimension of function classes, Mat. Zametki, 28(1980), 727-736.
- [5] Fang Gensun & Liu Yongping, Average widths and optimal interpolation of Sobolev-Wiener classes $W_{pq}^r(\mathbb{R})$ in the metric $L_q(\mathbb{R})$, J. Approx. Theory, 74:3(1993), 335-352.
- [6] I.I.Hirschman & D.V.Widder, The Convolution Transform, Princeton Press, Princeton, 1955.
- [7] S.Karlin, Total Positivity, V1, 1968.
- [8] Li Chun, Infinite dimensional widths of function classes (II), J. Approx. Theory, 69:1(1992), 15-34.
- [9] G.G.Magaril-II'jaev, Average dimensions, widths and optimal recovery of Sobolev classes of functions on the real axis (in Russian), Math. Sbornik, 182(1991), 1635-1656.
- [10] A.Pinkus, N-widths in Approximation Theory, Springer- Verlag, Berlin, 1985.
- [11] Sun Yongsheng, The Theory of Approximation I, Beijing Normal University Press, 1989.
- [12] Sun Yongsheng & Fang Gensun, The Theory of Approximation II, Beijing Normal University Press, 1990.
- [13] E.M.Stein & G.Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton, 1971.
- [14] L.V.Taikov, The best approximation in $L_2(0, 2\pi)$ of classes of bounded variation, Mat. Zametki, 28(1980), 239-242.
- [15] V.M.Tikhomorov, Extremal problems and approximation (in Chinese), Advance in Math., 19(1990), 449-451.
- [16] V.M.Tikhomirov, Some Problems in the Approximation Theory, Nauka, Moscow, 1976.

L(IR) 中卷积函数类在 $L_2(IR)$ 中的平均 $\sigma-K$ 宽度

刘 永 平 (北京师范大学数学系,北京100875)

摘 要

本文研究了L(R) 中的卷积函数类在 $L_2(R)$ 中的平均 $\sigma - K$ 宽度且得到一些精确结果。同时,对非卷积情形,得到一些渐近结果。

— 207 —

Average $\sigma - K$ Width of Convolution Function Class of $L(I\!\!R)$ in $L_2(I\!\!R)$.

Liu Yongping (Dept. of Math., Beijing Normal Univ., Beijing 100875)

Abstract In this paper, we study the average $\sigma - K$ widths of the convolution classes of functions of $L(\mathbb{R})$ in $L^2(\mathbb{R})$ and obtain some exact results. Meanwhile, for the non-convolution case, we also obtain some asymptotic results.

Keywords average $\sigma - K$ width, optimal subspace, average dimension, convolution class.

Classification AMS(1991) 41A46, 41A15/CCL O174.41

1. Introduction

Let X be a normed linear space with norm $\|\cdot\|$ and M a subspace of X. For a subset M of X, set

$$E(M, M, X) =: \sup_{f \in M} e(f, M, X),$$

where $e(f, M, X) =: \inf\{||f - g|| : g \in M\}$ for any $f \in M$.

For $p \in [1, +\infty)$, let A be a linear subspace of infinite dimension of $L^p =: L^p(\mathbb{R})$ (\mathbb{R} is the real line), and set $B(A) = \{f \in A : ||f||_p \le 1\}$. For any $\epsilon > 0$ and a > 0, set $k_{\epsilon}(a, L, L^p) =: \min\{m : \text{ there exists a subspace } M \text{ of dimension } m \text{ of } L^p(I_a) \text{ such that } E((BA)(I_a), M, L^p(I_a)) \le \epsilon\}$, where $I_a =: [-a, a], ||\cdot||_p \text{ denotes the usual } L^p(\mathbb{R})$ -norm defined by $||f||_p = \{\int_{\mathbb{R}} |f(t)|^p dt\}^{1/p}$ for any $f \in L^p$ and $(BA)(I_a) =: \{f|_{I_a} : f \in B(A)\}$. If there exists a positive real number $\sigma > 0$ such that

$$\overline{\dim}(A,L^p)=:\lim_{\epsilon o 0}\lim_{\overline{a o\infty}}rac{k_\epsilon(a,A,L^p)}{2a}=\sigma,$$

then, the subspace A is called to be of average σ -dimension.

Let M be a subset of L^p . The quantity

$$\overline{d_{\sigma}}(\mathcal{M}, L^p) =: \inf\{E(\mathcal{M}, A, L^p) : \overline{\dim}(A, L^p) \leq \sigma\}$$

is called the Kolmogorov average σ -width of \mathcal{M} in L^p (shortly, average $\sigma - K$ width). If there exists a subspace A^*_{σ} of L^p of average dimension $\leq \sigma$ such that $\overline{d_{\sigma}}(\mathcal{M}, L^p) = E(\mathcal{M}, A^*_{\sigma}, L^p)$, then A^*_{σ} is called an optimal subspace realizing $\overline{d_{\sigma}}(\mathcal{M}, L^p)$.

^{*}Received Dec.28, 1992. Supported by National Natural Youth Science Fund of China.

Let $G \in L^1$. Set

$$B_1(G) = \{G * \varphi : ||\varphi||_1 \le 1\},\tag{1.1}$$

where $G * \varphi$ denotes the convolution transform with kernel G of the function φ , defined by

$$(G * \varphi)(x) =: \int_{\mathbb{R}} G(x-t)\varphi(t)dt. \tag{1.2}$$

Let $r \in \mathbb{Z}_+ =: \{1, 2, \cdots\}$. For any $F \in C(\mathbb{R})$, set

$$W_1^r F =: \{ f \in L^2 : \text{ there exists } h \in B(L^1) \text{ such that } (it)^r f^{\wedge}(t) = F(t)h^{\wedge}(t) \},$$
 (1.3)

where the Fourier transform f^{\wedge} of $f \in L^1$ is defined by $f^{\wedge}(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{-itx} dt$, and of L^2 by the limit in $L^2(\mathbb{R})$ -norm of $\frac{1}{\sqrt{2\pi}} \int_{-\rho}^{\rho} f(t) e^{-itx} dt$, $\rho \to +\infty$. When $F(x) = 1, W_1^r F = W_1^r(R)$ is the usual Sobolev class.

Since the concept of the average widths was proposed by Tikhomirov [15], the average $\sigma - K$ width problems of many smooth function classes of $L^p(\mathbb{R})$ in $L^q(\mathbb{R})(1 \le q \le p \le \infty)$ have been studied and many exact results have been obtained (see cf. [2,5,9]). The purpose of this paper is to study the average $\sigma - K$ width problems of the classes $B_1(G)$ and $W_1^r F$ in L^2 for some proper functions $G, F \in C(\mathbb{R})$, respectively. We obtain two main theorem as follows.

Theorem 1 Let $G \in L^1$. If there exists a constant C such that $|G(x)| \leq \frac{C}{1+x^2}$ for any $x \in \mathbb{R}$, then

$$\overline{d_{\sigma}}(B_1(G), L^2) = E(B_1(G), B_{E(\sigma)}^2, L^2) = ||G^{\wedge}||_{L^2(\mathbb{R} - E(\sigma))}, \tag{1.4}$$

where $||f||_{L^2(E)} =: \{ \int_E |f(t)|^2 dt \}^{1/2}, B_E^2 =: \{ f \in L^2 : \text{supp } f^{\wedge} \subset E \}, \text{ for the Lebesgue measurable subset } E \text{ of } \mathbb{R}, \text{ while } E(\sigma) \text{ is a subset of } \mathbb{R}, \text{ defined by }$

$$\sup\{\|G^{\wedge}\|_{L^{2}(E)}: E \subset \mathbb{R}, \text{ mes} E = 2\pi\sigma\} = \|G^{\wedge}\|_{L^{2}(E(\sigma))}.$$

Theorem 2 Let $r \in \mathbb{Z}_+$. If F(x) in $C(\mathbb{R}), F(0) \neq 0$, has a bounded and continuous second derivative, and |F(x)| is even on \mathbb{R} and nonincreasing on $(0, \infty)$, then

$$\sup_{|y|<\frac{1}{\sigma}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{|F(t)|^2}{t^{2r}} (1 - \cos ty) dt \right\}^{1/2} \le \overline{d_{\sigma}}(W_1^r F, L^2) \\
\le E(W_1^r F, B_{\pi\sigma}^2, L^2) \le \sup_{y \in \mathbb{R}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{|F(t)|^2}{t^{2r}} (1 - \cos ty) dt \right\}^{1/2}, \tag{1.5}$$

where $B_{\pi\sigma}^2 =: B_{[-\pi\sigma,\pi\sigma]}^2$ denotes the set of all entire functions which $f \in L^2$ when restricted on \mathbb{R} .

2. Proof of Theroem 1

To prove Theorem 1, we need

Lemma 2.1 (cf. [4]) If E is a Lebesque measurable subset of \mathbb{R} , then

$$\overline{\dim}(B_E^2, L^2) = \frac{\operatorname{mes} E}{2\pi}.$$
 (2.1)

Specially,

$$\overline{\dim}(B_{\pi\sigma}^2, L^2) = \sigma, \tag{2.2}$$

for any $\sigma > 0.3$

Lemma 2.2 Let $G \in L^1 \cap L^2$. Then,

$$E(B_1(G), B_E^2, L^2) \le ||G^{\wedge}||_{L^2(\mathbb{R} - E)}. \tag{2.3}$$

Proof For each $f \in B_1(G)$, let $g(f) \in B_E^2$ defined by

$$(g(f))^{\wedge}(x) = \begin{cases} f^{\wedge}(x), & x \in E, \\ 0, & x \in \mathbb{R} - E. \end{cases}$$
 (2.4)

For any $f(x) = G * \varphi \in B_1(G)$, since $|\varphi^{\wedge}(x)| \leq \frac{1}{\sqrt{2\pi}}$ and $f^{\wedge}(t) = \sqrt{2\pi}G^{\wedge}(t)\varphi^{\wedge}(t)$, then by Plancherel theory (cf. [1]), we have

$$||f - g(f)||_{2} = \{ \int_{\mathbb{R}^{-}E} |f^{\wedge}(t)|^{2} dt \}^{1/2} = \sqrt{2\pi} \{ \int_{\mathbb{R}^{-}E} |G^{\wedge}(x)\varphi^{\wedge}(x)|^{2} dt \}^{1/2}$$

$$\leq \sqrt{2\pi} \max_{x \in \mathbb{R}} |\varphi^{\wedge}(x)| ||G^{\wedge}||_{L^{2}(\mathbb{R}^{-}E)} \leq ||G^{\wedge}||_{L^{2}(\mathbb{R}^{-}E)}.$$
(2.5)

By (2.5), we get Lemma 2.2.

Proof of Theorem 1 Firstyly, we prove the inequality,

$$\overline{d_{\sigma}}(B_1(G), L^2) \ge ||G^{\wedge}||_{L^2(\mathbb{R} - E(\sigma))}. \tag{2.6}$$

Set $\Delta(C) = \{G(-t) : t \in \mathbb{R}\}$. If A be a subspace of L^2 of average dimension $\leq \sigma$, then, by the definition of average dimension, for any N > 0, there exists a subspace M of dimension k(N) of $L^2(I_N)$ such that

$$E((BA)(I_N), M, L^2(I_N)) < \epsilon,$$

where $k(N) =: k_{\epsilon}(N, A, L^2)$.

For each $t \in \mathbb{R}$, let $f_t(x) =: G(x-t)$. Then for any $g \in A$ we have

$$e(f_t, M, L^2(I_N)) \le ||f_t - g||_2 + \epsilon ||g||_2 \le (1 + \epsilon) ||f_t - g||_2 + \epsilon ||f_t||_2.$$
 (2.7)

Set $P_{\eta}(x) = \frac{\eta}{\pi(x^2 + \eta^2)}$, $\eta > 0$. Then $(P_{\eta})^{\wedge}(x) = e^{-\eta|x|}$, $\int_{\mathbb{R}} P_{\eta}(x) dx = 1$ and $\|P_{\eta} * \varphi - \varphi\|_{2} \to 0$ as $\eta \to 0^{+}$ for any $\varphi \in L^{2}(\mathbb{R})$ (see cf. [13]).

For any $t \in \mathbb{R}$, notice that

$$e(f_t * P_{\eta}, A, L^2) \le E(B_1(G), A, L^2),$$
 (2.8)

— 201 —

we have

$$e(f_t, A, L^2) = \lim_{\eta \to 0^+} e(f_t * P_\eta, A, L^2) \le E(B_1(G), A, L^2).$$
 (2.9)

Hence, by (2.7), (2.8) and (2.9), we get

$$e(f_t, M, L^2(I_N)) \le (1 + \epsilon)E(B_1(G), A, L^2) + \epsilon ||G||_2,$$
 (2.10)

for any $t \in \mathbb{R}$.

Set $F(x) = \sum_{j \in Z} G(2Nx - N + 2jN), x \in [0, 1]$. Then

$$F(x) \sim \sum_{k \in Z} F^{\hat{}}(k) e^{2k\pi i x} = \frac{\sqrt{2\pi}}{2N} \sum_{k \in Z} G^{\hat{}}(\frac{k\pi}{N}) e^{-ik\pi} e^{2k\pi i x}. \tag{2.11}$$

Thus, we have

$$e(f_t, M, L^2(I_N)) \ge e(\sum_{j \in Z} f_t(\cdot + 2jN), M, L^2(I_N)) - \eta_t(N) = E_N(\frac{t}{2N}) - \eta_t(N), \quad (2.12)$$

where $\eta_t(N) =: \|\sum_{j \neq 0} f_t(\cdot + 2jN)\|_{L^2(I_N)}$ and $E_N(t) =: (2N)^{\frac{1}{2}} e(F(\cdot + t), M(N), L^2[0, 1])$, while $M(N) =: \{g(2Nx - N) : g \in M\}$.

By Pinkus [10], we see

$$\max_{0 \le t \le 1} E_N^2(t) \ge \int_0^1 \dot{E}_N^2(t) dt \ge \sum_{k \in Z - \square_N} |G^{\hat{}}(\frac{k\pi}{N})|^2 \cdot \frac{\pi}{N}, \tag{2.13}$$

where \square_N is a subset of Z with card $\square_N = k(N)$ such that

$$|G^{\wedge}(\frac{k\pi}{N})| \leq |G^{\wedge}(\frac{k'\pi}{N})|, \forall k' \in \square_N, k \in Z \backslash \square_N.$$

By a proper discussion, it is easy to verify that

$$\lim_{N \to \infty} \sum_{k \in \mathbb{Z} \setminus \square_N} G^{\wedge}(\frac{k\pi}{N})|^2 \frac{\pi}{N} = \{ \int_{\mathbb{R} - E_{\sigma}} |G^{\wedge}(x)|^2 dx \}^{1/2}.$$
 (2.14)

Hence, by (2.10) and (2.12), we have

$$\int_{0}^{1} E_{N}^{2}(t)dt = \int_{\delta}^{1-\delta} E_{N}^{2}(t)dt + \int_{0}^{\delta} E_{N}^{2}(t)dt + \int_{1-\delta}^{1} E_{N}^{2}(t)dt
\leq \max_{\delta \leq t \leq 1-\delta} E_{N}^{2}(t) + \int_{0}^{\delta} E_{N}^{2}(t)dt + \int_{1-\delta}^{1} E_{N}^{2}(t)dt
\leq \max_{\delta \leq t \leq (1-\delta)2N} (e(f_{t}, M, L^{2}(I_{N})) + \eta_{t}(N)) + \int_{[0,1]\setminus[\delta,1-\delta]} E_{N}^{2}(t)dt
\leq \max_{2\delta N \leq t \leq (1-\delta)2N} \eta_{t}(N) + (1+\epsilon)E(B_{1}(G), A, L^{2})
+ \epsilon ||G||_{2} + \int_{[0,1]\setminus[\delta,1-\delta]} E_{N}^{2}(t)dt$$
(2.15)

for any $0 < \delta < \frac{1}{2}$. Since $|G(x)| \leq \frac{C}{1+x^2}$, then it is easy to see that

$$\lim_{N \to \infty} \max_{2\delta N < t \le (1-\delta)2N} \eta_t(N) = 0, \tag{2.16}$$

and there is a constant C_1 such that

$$E_N^2(t) \le (2N) \|F(\cdot + t)\|_{L^2[0,1]}^2 = \sum_{k \in \mathbb{Z}} |G^{\wedge}(\frac{k\pi}{N})|^2 \cdot \frac{\pi}{N} \le C_1.$$
 (2.17)

By (2.14)-(2.17), we have

$$||G^{\wedge}||_{L^{2}(\mathbf{R}-E_{\sigma})} \leq (1+\epsilon)E(B_{1}(G), A, L^{2}) + \epsilon||G||_{2} + 2C_{1}\delta$$
(2.18)

Letting $\delta \to 0^+, \epsilon \to 0^+$ in (2.18), we have

$$||G^{\wedge}||_{L^{2}(\mathbb{R}-E_{\sigma})} \le E(B_{1}(G), A, L^{2}).$$
 (2.19)

According to the definition of average $\sigma - K$ width, from (2.19) we see (2.6).

3. Proof of Theorem 2

As in [1], for any $c \in (0,1)$, let $\eta_c(t)$ be an even function which satisfies the following conditions:

- (i) $\eta_c(t) = 1, |t| > c\pi$,
- (ii) $\eta_c(t)$ has a continuous second derivative, and $0 \le \eta_c(t) \le 1, t \in \mathbb{R}$,
- (iii) The rations $\frac{\eta''_c(t)}{t^r}$, $\frac{\eta'_c(t)}{t^{r+1}}$, $\frac{\eta_c(t)}{t^{r+2}}$ does not become infinite. Let F be a continuous and bounded function. Set

$$K(x) =: \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}^n} \frac{\eta_c(t)}{(it)^r} F(t) e^{itx} dt.$$
 (3.1)

If $F(0) \neq 0$, then for any $f \in W_1^r F$ there exists $h \in L^1, \int_{\mathbb{R}} h(t) dt = 0$, such that

$$f^{\wedge}(t) = (it)^{-r} F(t) h^{\wedge}(t). \tag{3.2}$$

Hence, it is easy to see that

$$\sqrt{2\pi}f(x) - (K*h)(x) \in B_{c\pi}^2.$$
 (3.3)

Set

$$B_1^0(K) = \{K * h : f^{\wedge}(x) = (it)^{-r} F(t) h^{\wedge}(x), f \in W_1^r F\}.$$

Lemma 3.1 If $F, F(0) \neq 0$, is a continuous and bounded function, then for any $c \in (0, \sigma)$,

$$E(W^r F, B_E^2, L^2) \le \sup_{y \in \mathbb{R}} \left\{ \frac{1}{2\pi} \int_{\mathbb{R}^{-E}} \frac{|F(t)|^2}{t^{2r}} (1 - \cos ty) dt \right\}^{1/2}, \tag{3.4}$$

where $E\supset (0,c\pi)$.

Proof By the dual theorem of best approximation (cf.[11]) and (3.3), it is easy to see that

$$\sqrt{2\pi}E(W_{1}^{r}F, B_{E}^{2}, L^{2}) = E(B_{1}^{0}(K), B_{E}^{2}, L^{2})$$

$$= \sup\{\int_{\mathbb{R}} f(t)g(t)dt : f \in B_{1}^{0}(K), g \in B(L^{2}), g \perp B_{E}^{2}\}$$

$$= \sup\{e_{1}(\overline{K} * g)_{C}; g \in B(L^{2}) \text{ and } g \perp B_{E}^{2}\}$$

$$\leq \frac{1}{2} \sup_{\substack{g \in L^{2} \\ g \perp B_{E}^{2}}} \sup_{y} \|(\overline{K} * g)(\cdot + \frac{y}{2}) - (\overline{K} * g)(\cdot - \frac{y}{2})\|_{C}$$

$$\leq \frac{1}{2} \sup_{y} e(\overline{K}(\cdot + \frac{y}{2}) - \overline{K}(\cdot - \frac{y}{2}), B_{E}^{2}, L^{2})\|g\|_{2}$$

$$\leq \sup_{y}\{\int_{\mathbb{R}-E} \frac{|F(t)|^{2}}{t^{2r}} \eta_{c}^{2}(t)(1 - \cos ty)dt\}^{1/2},$$
(3.5)

where $e_1(f)_C =: \inf_a \sup_t |f(t) - a|, \overline{K}(t) =: K(-t), \text{ and } f \perp B_E^2 \text{ means } \int_{I\!\!R} f(t) \varphi(t) dt = 0 \text{ for any } \varphi \in B_E^2.$

Thus, Lemma 3.1 follows from (3.5).

Proof of Theorem 2 The last inequlity of (1.5) easily follows from Lemma 3.1 if we set $E = [-\pi\sigma, \pi\sigma]$. Next, we prove the first inequality of (1.5). Let A be a subspace of average dimension $\leq \sigma$. Since $\overline{\dim}(B_{\pi c}^2, L^2) = c$, then it is easy verify that $A + B_{\pi c}^2$ is a subspace of average dimension $\leq \sigma + c$ of L^2 , where $A + B_{c\pi}^2 = \{f + g : f \in A, g \in B_{c\pi}^2\}$.

Hence, we have

$$\sqrt{2\pi}E(W_1^rF, A, L^2) \ge \sqrt{2\pi}E(W_1^rF, A + B_{c\pi}^2, L^2) \ge E(B_1^0(K), A + B_{c\pi}^2, L^2). \tag{3.6}$$

Set

$$g_y(x) = \frac{K(x + y/2) - K(x - y/2)}{2}$$

When r > 1, it is easy to verify that under the conditions of Theorem 2, K instead of G in Theorem 1 satisfies the conditions of Theorem 1. By [14],[16], similar to the proof of Theorem 1, we have

$$E(B_1^0(K), A + B_{c\pi}^2, L^2) \ge \sup_{y} e(g_y(\cdot), A + B_{c\pi}^2, L^2)$$
(3.7)

and

$$\sup_{\mathbf{y}} (1 + \epsilon) c(g_{\mathbf{y}}(\cdot), A + B_{c\pi}^2, L^2) + \epsilon \|K\|_2 \ge \sup_{\mathbf{y} \in \mathbb{R}} \inf_{\text{mes } E \le 2\pi(\sigma + c)} \|(g_{\mathbf{y}})^{\wedge}(\cdot)\|_{L^2(\mathbb{R} - E)}$$
(3.8)

for any $\epsilon > 0$.

By (3.6) and (3.8), we have

$$\sqrt{2\pi} E(W_1^r F, A, L^2) \ge \sup_{y \in \mathbb{R}} \inf_{\text{mes } E \le 2\pi(\sigma + c)} \|(g_y)^{\wedge}(\cdot)\|_{L^2(\mathbb{R} - E)}. \tag{3.9}$$

When r=1, set

$$\chi_N(t) = \begin{cases} \eta_c(t+N), & \text{if } -N \le t \le 0, \\ \eta_c(N-t), & \text{if } 0 \le t \le N, \\ 0, & \text{if } |t| > N. \end{cases}$$
(3.10)

Obviously, $0 \le \chi_N(t) \le 1$, sup $p(\chi_N) \subset [-N, N]$, $\chi_N(t) = 1$, $t \in [-N + c\pi, N - c\pi]$, and $\chi_N(t)$ has continuous and bounded second derivative.

Denote by

$$K_N(x) =: \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{\eta_c(t) F(t) \chi_N(t)}{it} e^{itx} dt, \qquad (3.11)$$

and

$$(g_y)_N(x) =: \frac{K_N(x+y/2) - K_N(x-y/2)}{2}.$$
 (3.12)

For any N, it is easy to see that $K_N(x)$ instead of C in Theorem 1 satisfies the conditions of Theorem 1, we have

$$\sqrt{2\pi} E(W_1^1 F, A, L^2) \ge E(B_1^0(K), A + B_{c\pi}^2, L^2)
\ge E((B_1^0)(K_N), A + B_{c\pi}^2, L^2) - \|K - K_N\|_2
\ge \sup_{y \in \mathbb{R}} \inf_{\text{mes } E \le 2\pi(\sigma + c)} \|(g_y)^{\wedge}_N\|_{L^2(\mathbb{R} - E)} - \|K - K_N\|_2.$$
(3.13)

Notice that $||K - K_N||_2 \to 0$ as $N \to \infty$. Letting $N \to \infty$ in (3.13), we also get (3.9) for r = 1.

Since |F(x)| is even on \mathbb{R} and nonincreasing on $(0, \infty)$, then by a similar argument as used by Pinkus in [10], we may obtain

$$\frac{|F(t)|^2}{t^{2r}}(1-\cos ty) \le \frac{|F(t)|^2}{t^{2r-2}} \min_{|t| \le \pi(\sigma+2c)} \frac{1-\cos ty}{t^2},\tag{3.14}$$

for $|t| \ge \pi(\sigma + 2c)$ and $|y| \le \frac{1}{\sigma + 2c}$. Hence, by (3.14), we have

$$\sup_{\boldsymbol{y} \in \boldsymbol{R}} \inf_{\text{mes } E \leq 2\pi(\sigma+c)} \|g_{\boldsymbol{y}}^{\wedge}(\cdot)\|_{L^{2}(\boldsymbol{R}-E)} \geq \sup_{|\boldsymbol{y}| \leq \frac{1}{\sigma+2c}} \left\{2 \int_{\pi(\sigma+2c)}^{\infty} \frac{|F(t)|^{2}}{t^{2r}} (1-\cos t \boldsymbol{y}) dt\right\}^{1/2}, \quad (3.15)$$

By (3.9) and (3.15), we have

$$\sqrt{2\pi}E(W_1^rF,A,L^2) \ge \sup_{|y|<\frac{1}{1-\alpha}} \left\{2\int_{\pi(\sigma+2c)}^{\infty} \frac{|F(t)|^2}{t^{2r}} (1-\cos ty)dt\right\}^{1/2}, \tag{3.16}$$

Letting $c \to 0^+$ in (3.16), the first inequality of (1.5) is obtained. We complete the proof of Theorem 2.

4. Some Corollaries

Let $P_r(t) = \prod_{j=1}^r (t-t_j), t_j \in \mathbb{R}$, be a polynomial of degree r with only real zeros, and $P_r(D), D = \frac{d}{dx}$, the differential operator corresponding $P_r(t)$. Set

$$W_1^r(P_r) = \{ f \in L^2 : ||P_r(D)f||_1 < 1 \}.$$

Obviously, $P_r(iy)f^{\wedge}(y) = (P(D)f)^{\wedge}(y), y \in \mathbb{R}$, for any $f \in W_1(P_r)$, we have

Theorem 3 Let $r \in \mathbb{Z}_+$. Then,

(i) when $P_r(0) = 0$,

$$\sup_{|y|<\frac{1}{\sigma}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{1 - \cos ty}{|P^r(it)|^2} dt \right\}^{1/2} \le \bar{d}_{\sigma}(W_1(P_r), L^2)$$

$$\le E(W_1(P_r), B_{\pi\sigma}^2, L^2) \le \sup_{y \in \mathbb{R}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{(1 - \cos ty) dt}{|P_r(t)|^2} \right\}^{1/2}.$$

(ii) when $P_r(0) \neq 0$,

$$\bar{d}_{\sigma}(W_1(P_r), L^2) = E(W_1(P_r), B_{\sigma\pi}^2, L^2) = \{\frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{dt}{|P_r(it)|^2}\}^{1/2}.$$

Corollary Let $r \in \mathbb{Z}_+$. If $P_r(t) = t^r$, then

$$\sup_{|y| \le \frac{1}{2}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{1 - \cos ty}{t^{2r}} dt \right\}^{1/2} \le \bar{d}_{\sigma}(W_{1}^{r}(\mathbb{R}), L^{2})$$

$$\le E(W_{1}^{r}(\mathbb{R}), B_{\pi\sigma}^{2}, L^{2}) \le \sup_{y \in \mathbb{R}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{(1 - \cos ty) dt}{t^{2r}} \right\}^{1/2}.$$

Let G be a PF density (Shortly, $G \in PF$) and P(z) the reciprocal of the Laplace transformation of G(x). It is well-known that P(z) may be represented as

$$P(z) = e^{-cz^2 + bx} \prod_{k=1}^{\infty} (1 - \frac{z}{a_k}) \cdot e^{-\frac{z}{a_k}}, \tag{4.1}$$

where $c \geq 0, b, a_k \in \mathbb{R}, 0 < c + \sum_{k=1}^{\infty} a_k^{-2} < \infty$. Moreover,

$$G(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{iux}}{P(iu)} du. \tag{4.2}$$

By [7],[12], we see

$$|G(x)| = O(e^{-c|x|}), |x| \to \infty.$$

for some c > 0. Meanwhile, it is easy to see that $\frac{1}{|P(iu)|}$ is even on \mathbb{R} and nonincreasing on $(0, \infty)$. Thus, we have

Theorem 4 Let G and P be defined by (4.1) and (4.2). Then

$$\bar{d}_{\sigma}(B_1(G),L^2)=E(B_1(G),B_{\pi\sigma}^2,L^2)=\{rac{1}{\pi}\int_{\pi\sigma}^{\infty}rac{du}{|P(iu)|^2}\}^{1/2}.$$

Let P(z) be defined by (4.1). Set $W_1^r(P) = \{f \in L^2 : \text{there exists } h \in L^1 \text{ such that } (it)^r P(it) f^*(t) = h^*(t) \text{ a.e. } t \in \mathbb{R}\}.$

By Theorem 2, we have

Theorem 5 If P(z) is defined by (4.1), then

$$\sup_{|y| \le \frac{1}{2}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{1 - \cos ty}{t^{2r} |P(it)|^2} dt \right\}^{1/2} \le \bar{d}_{\sigma}(W_1^r(P), L^2)$$

$$\le E(W_1^r(P), B_{\pi\sigma}^2, L^2) \le \sup_{y \in \mathbb{R}} \left\{ \frac{1}{\pi} \int_{\pi\sigma}^{\infty} \frac{(1 - \cos ty) dt}{t^{2r} |P(it)|^2} \right\}^{1/2}.$$

References

- [1] N.I.Achieser, Theory of Approximation, New York, 1956.
- [2] Chen Dirong, Average n-widths and optimal interpolation of Sobolev class in $L_p(\mathbb{R})$, Chinese Ann. Math., 13B:4(1992), 396-405.
- [3] Chen Dirong, On the cardinal spline interpolation corresponding to an infinite order differential operator, Acta Math. Sinica, New Series, 10:3(1994), 315-324.
- [4] Z.Din, The average ε-dimension of function classes, Mat. Zametki, 28(1980), 727-736.
- [5] Fang Gensun & Liu Yongping, Average widths and optimal interpolation of Sobolev-Wiener classes $W_{pq}^r(\mathbb{R})$ in the metric $L_q(\mathbb{R})$, J. Approx. Theory, 74:3(1993), 335-352.
- [6] I.I.Hirschman & D.V.Widder, The Convolution Transform, Princeton Press, Princeton, 1955.
- [7] S.Karlin, Total Positivity, V1, 1968.
- [8] Li Chun, Infinite dimensional widths of function classes (II), J. Approx. Theory, 69:1(1992), 15-34.
- [9] G.G.Magaril-II'jaev, Average dimensions, widths and optimal recovery of Sobolev classes of functions on the real axis (in Russian), Math. Sbornik, 182(1991), 1635-1656.
- [10] A.Pinkus, N-widths in Approximation Theory, Springer- Verlag, Berlin, 1985.
- [11] Sun Yongsheng, The Theory of Approximation I, Beijing Normal University Press, 1989.
- [12] Sun Yongsheng & Fang Gensun, The Theory of Approximation II, Beijing Normal University Press, 1990.
- [13] E.M.Stein & G.Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton, 1971.
- [14] L.V.Taikov, The best approximation in $L_2(0, 2\pi)$ of classes of bounded variation, Mat. Zametki, 28(1980), 239-242.
- [15] V.M.Tikhomorov, Extremal problems and approximation (in Chinese), Advance in Math., 19(1990), 449-451.
- [16] V.M.Tikhomirov, Some Problems in the Approximation Theory, Nauka, Moscow, 1976.

L(IR) 中卷积函数类在 $L_2(IR)$ 中的平均 $\sigma-K$ 宽度

刘 永 平 (北京师范大学数学系,北京100875)

摘 要

本文研究了L(R) 中的卷积函数类在 $L_2(R)$ 中的平均 $\sigma - K$ 宽度且得到一些精确结果。同时,对非卷积情形,得到一些渐近结果。

— 207 —