Theorem 5 If P(z) is defined by (4.1), then

1 [ 1—-costy <
= =242 < d, (W] (P), L*
s L, wpEE < IR,

1 (% (1 —costy)dt,y
< BOW(P), B3, 1) < supi - | Sty
< BWI(P), Byo, L7) < sup{_ | | rPaEn
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L(R) in Ly(IR). *
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Abstract In this paper, we study the average o — K widths of the convolution classes
of functions of L(IR) in L?(/R) and obtain some exact results. Meanwhile, for the non-
convolution case, we also obtain some asymptotic results.

Keywords average o — K width, optmal subspace, average dimension, convolution
class.

Classification AMS(1991) 41A46, 41A15/CCL 0174.41

1. Introduction

Let X be a normed linear space with norm || -|| and M a subspace of X. For a subset
M of X, set
E(M, M, X) =: sup e(f, M, X),
fEM
where e(f, M, X) =:inf{||f —gll : g € M} for any f € M.

For p € [1,+00), let A be a linear subspace of infinite dimension of L? =: LP(IR) (IR
is the real line), and set B(A) = {f € A : ||f|l, < 1}. For any ¢ > 0 and a > 0, set
ke(a, L, LP) =: min{m : there exists a subspace M of dimension m of LP(I,) such that
E((BA)(I.), M, LP(1,)) < €}, where I, =: [—a,al,]|| - ||, denotes the usual LP(IR)-norm
defined by ||fil, = {[g |f(t)|Pdt}}/? for any f € LP and (BA)(I,) =: {f|1, : f € B(A)}. If

there exists a positive real number ¢ > 0 such that

- ke(a, A, L*?

dlm(A, Lp) = lim lim _{«"’_’) =0,
e—0a>co 2a

then, the subspace A is called to be of average o-dimension.

Let M be a subset of LP. The quantity
d,(M, LP) =: inf{ E(M, A, L?) : dim(A, L?) < o}

is called the Kolmogorov average o-width of M in LP (shortly, average ¢ — K width).
If there exists a subspace A} of LP of average dimension < o such that d,(M, L?) =

E(M, A}, LP), then A} is called an optimal subspace realizing d, (M, LP).

*Received Dec.28, 1992. Supported by National Natural Youth Science Fund of China.
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Let G € L!. Set
Bi(G) ={G *p:llpl1 < 1}, (1.1)

where G * ¢ denotes the convolution transform with kernel G of the function ¢, defined
by
(G * ) (z) = /IR Gz — t)p(t)dt. (1.2)

Let r€ Zy =: {1,2,---}. For any F € C(IR), set

WIF =:{f € L* : there exists h € B(L') such that (it)" f(t) = F(t)h"(t)}, (1.3)
where the Fourier transform f” of f € L! is deﬁne.d by f(z) = ﬁ [g f(t)e~*=dt, and of
L? by the limit in L?(IR)-norm of \/% JZ, f(t)e*dt,p — +oc. When F(z) = 1,W]F =
W1 (R) is the usual Sobolev class.

Since the concept of the average widths was proposed by Tikhomirov [15], the average
o — K width problems of many smooth function classes of LP(IR) in LY(R)(1 < ¢ < p < 00)
have becn studied and many exact results have been obtained (sec cf. [2,5,9]). The purpose
of this paper is to study the average ¢ — K width problems of the classes B;(G) and W[ F

in L? for some proper functions G, F € C(IR), respectively. We obtain two main theorem
as follows.

Theorem 1 Let G € L. If there exists a constant C such that |G(z)| < i—f—zg for any
z € IR, then

de(B1(G), L*) = E(B1(G), Bi(o), I*) = 1G | 2(k - B (o) (1.4)

where || fll12(p) =: {Jg |f(O)2de}? BE =: {f ¢ L*: supp " C E}, for the Lebesgue
measurable subset E of IR, while E(c) is a subsct of IR, defined by

sup{l|G"||L2(g) : E € R, mesE =270} = |G| 128 (o))

Theorem 2 Let r € Z,. If F(z) in C(IR), F(0) # 0, has a bounded and continuous
second derivative, and |F(z)| is even on IR and nonincreasing on (0, 00), then

o0}

F(t)
tZr

(1 - costy)dt}/? < d (W[ F, L?

1
sup {~

T
i<t T Ino

(1.5)

. 1 [ |F())?

< E(WJF,B:,,L*) < sup{= F()] (1 — costy)dt}/?,
yeER T Jxo

t2r

where B =: B[z_m o] denotes the set of all entire functions which f € L*? when restricted
on IR.

2. Proof of Theroem 1

To prove Theorem 1, we need
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Lemma 2.1 (cf. [4]) If E is a Lebesque measurable subset of IR, then

mesE

dim(B%, L?) = o (2.1)
Specially,
dim(BZ,, L*) = o, (2.2)
for any o > 0.2
Lemma 2.2 Let G € L' n L?. Then,
E(B\(G), B, L*) < |IGM||L2 (- k) (2.3)

Proof For rach f € By(G), let g(f) € BE defined by

(9(N) =) = { ({A(x)’ ii;’_ B (2.4)

Y

For any f(z) = G xp € B1(G), since |p"(z)] < # and f*(t) = V27G*(t)p"(t), then
by Plancherel theroy (cf. [1]), we have

1 =sDle =4[ _irr@Pray =van([ (6N @)e" @) e

R- - (2.5)
< Vem Tea,,’{‘|‘PA(fC)|||GA“L2(R—E) < [GM 2 (- E)-
By (2.5), we get Lemma 2.2.
Proof of Theorem 1 Firstyly, we prove the inequality,
do(B1(G), L*) 2 IG™ Lo (m-E(o)- (2.6)

Set A(?) = {G(- ~t) -t € IR}. If A be a subspace of L? of average dimension < o,
then, by the definition of average dimension, for any N > 0, there exists a subspace M of
dimension k(N) of L*(Iy) such that

E((BA)(In), M, L*(In)) < ¢,

where k(N) =: k.(N, A, L?).
For each t € IR, let fi(z) =: G(z —t). Then for any ¢ € A we have

e(fi, MyLA(IN)) < || fe = gll2 + €llgliz < (1 + life = glla + I fe]l2- (2.7)
Set P,(z) = H;ﬂ_—nq,n > 0. Then (P,)"(z) = ¢~ [ Py(z)de = 1 and ||P, * ¢ —
pll2 = 0as n — 0" for any ¢ € L?(IR) (see cf. [13]).
For any t € IR, notice that

e(fex Py, A, L?) < E(By(G), A, L?), (2.8)
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we have

e(fi, A, L*) = Jim_e(fex Py, 4, L*) < E(Bi(G), A, L%). (2.9)
Hence, by (2.7), (2.8) and (2.9), we get
e(fi, M, L*(In)) < (1+ €)E(B:1(G), A, L*) + €/|G||2, (2.10)
for any t € R.
Set F(z) =3 ;e G(2Nz — N +2jN),z € [0,1]. Then
F(z) ~ %FA(IC)CZIW{: — gkezzcl\(%)e_ihemh' (2.11)

Thus, we have

t

e(fe, M, L*(IN)) 2 e(D_ fe(- + 2iN), M, L*(IN)) — m(N) = En(gy) —m(N), (212)
i€z

where 1:(N) =: || ;40 fe(- + 27 N)|[L2(zy) and En(t) =: (2N)ze(F(- +t), M(N), L2[0, 1)),
while M(N) =: {g(2Nz — N) : g € M}.
By Pinkus [10], we see

L km 7
E‘2 > Ez > el 2,
02t<1 N(t)—/o N(t)dt"kezzm SRV 2l (213)

—uUN

where (O is a subset of Z with card On = k(N) such that
k K
GA ) S 1GNP VK € Onk € Z\O.

By a proper discussion, it is easy to verify that
. k
lm Y GNGOPE={[ 16N day (2.14)
N—oo N N R-E
k€Z\ON ’

Hence, by (2.10) and (2.12), we have

1 1-§ § 1
/ E%(t)dt =/ E}:,(t)dt+f E% (¢)dt + E% (t)dt
0 6 0

\ 5 \ 1-1—6
<, mmax EN(t)-f-/O E'N(t)dt+/l_6 E% (t)dt
< (e(fe, M, L2 (In)) + me(N)) + E}(t)dt (215)

26NS{2?IX—6)2N JO,I]\[«S,I—-&]
25 < o nt(N) + (1+ €)E(B1(G), A, L*)

+€||G]|2 + E%(t)dt
[0,1\(6,1-5]

IN
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—~=, then it is easy to see that

n(N) =

for any 0 < § < 1. Since |G(z)| < 1+

lim
N—oo 25N<t<(1 §)2N

and there is a constant C; such that

BR (1) < MG+ O3y = 2 6" G- 1 < G
k€eZ

By (2.14)~(2.17), we have
1G22 (r-£,) < (1 + E(B1(G), A, L*) + €||G|z + 2C15
Letting § — 07,¢ — 0% in (2.18), we have

G2 (r-E,) < E(Bi(G), 4, L?).

According to the definition of average o — K width, from (2.19) we see (2.6).

3. Proof of Theorem 2

(2.16)

(2.17)

(2.18)

(2.19)

As in [1], for any ¢ € (0,1), let n.(t) be an even function which satisfies the following

conditions:
(1) ne(t) = 1,[t| > enm,
(i1) ne(*) has a continuous second derivative, and 0 < n.(t) < 1,t € R,
(iii) The rations 7<) o8 yfi—}, ?,—&,—) does not become infinite.
Let F be a continuous and bounded function. Set

nﬂ(t :t:dt

K) ~ Vo /IR Gy
If F(0) # 0, then for any f € W[ F there exists h € L', [ h(t)dt = 0, such that
f7(8) = (i) T F()h"(1).
Hence, it is easy to see that
V2rf(z) - (K + h)(z) € B,

Set
B K)={K xh: f*(z) = (it)""F(t)h"(z), f € W] F}.

(3.1)

(3.2)

(3.3)

Lemma 3.1 If F, F(0) # 0, is a continuous and bounded function, then for any ¢ € (0,0),

rp o2 r2 1 [F(&),. 1/2
E(W'F,Bg, L*) < sup{— >——(1 — costy)dt}/*,
veR 27 Jr_g t%T

where E > (0,cm).

— 203 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

(3.4)



Proof By the dual theorem of best approximation (cf.[11]) and (3.3), it is easy to see

that
V2rE(W[F, B}, L?) = E(BY(K), B}, L?)

=sup{[ f(g(t)dt: | € B(K),9 € B(L*),9LB})
= SIUP{CI(F +g)c;g € B(L?) and g1 B}}
< 5 sup sup (K +0)(- + 3) = (K x0)(- = Hlle

=3z XPs (3.5)
g.LBz:
1 N
< ESUPC(K(' + '2") - K( - 5))B123,L2)”g”2
v
F(t)}? 2
< sup{/ | (2)| n2(t)(1 - costy)det}'/?,
v JR-E 7

where €, (f)c =: infsup|f(t) —a|, K(t) =: K(—t), and fL B} means [ f(t)p(t)dt = O for
@

any p € B%.
Thus, Lemma 3.1 follows from (3.5).

Proof of Theorem 2 The last inequlity of (1.5) easily follows from Lemma 3.1 if we set
E = [-mo,no]. Next, we prove the first inequlity of (1.5). Let A be a subspace of average
dimension < ¢. Since dim(BZ,, L?) = c, then it is easy verify that A + B2, is a subspace
of average dimension < ¢ + ¢ of L?, where A+ B2 ={f +g:f€ A,g € B% }.

Hence, we have
V2rE(WF, A, L?) > V2rE(WIF. A+ B | L?) > E(BY(K),A+ B, L?). (3.6

Set
_ K(z+y/2) - K(z - y/2)
gy(z) = 2 -
When r > 1, it is easy to verify that under the conditions of Theorem 2, K instead of G
in Theorem 1 satisfies the conditions of Theorem 1. By [14],[16}, similar to the proof of

Theorem 1, we have

E(BY(K), A+ By, 1?) > supe(gy (), A + By, L) (5.7

cm?

and

sup(l—‘re)c(gy(-),A—i—Bf,,Lz) +€”K”2 2 sup
v

sup it 00 Olliae-ry (88)

for any € > 0.
By (3.6) and (3.8), we have

V2rE(W[F,A,L*) > sup i

Ay . .
y€RR mes E521Ir1(£r+c) 1{gw)" (Ml2(r-£) (3.9)

When r =1, set
n(t+ N), if —N<t<O0,

xn({t) =14 n(N —t), if0<t <N, (3.10)
0, if |t| > N.
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Obviously, 0 < xn(t) < 1,supp(xn) € [-N,N|,xn(t) = 1,t € [N +cm, N —en, and
xn~(t) has continuous and bounded second derivative.
Denote by

Kn(z) N (t) e dt, (3.11)

=

(0, (@) = Kn(z +y/2) ; Kn(z - y/2)_ (3.12)

For any N, it is easy to see that Ky(z) instead of 7~ in Theorem 1 satisfies the
conditions of Theorem 1, we have

and

V2rE(W\F, A, L*) > E(BY(K),A+ B%,L?)
> B((BY)(Kn), A+ B, L*) - K - Knll (3.13)
> -|K - K
> sup it G~ K~ Knll
Notice that ||K — Kn||z — 0 as N — oo. Letting N — oo in (3.13), we also get (3.9)
for r =1.
Since [F(z)| is even on IR and nonincreasing on (0, 00), then by a similar argument as
used by Pinkus in [10], we may obtain

|F(t)[? |F(t)|2 . 1 —costy
o (1 — costy) < 7 it|§£rrE:rI}+-2c) —z (3.14)
for [t| > (0 - 2¢) ard |y| < 5.
Heiice, by (3.14), we have
© P} 1/2
su 2AR_E) > Su 2/ ' 1 — costy)dt}!/ , (3.15
vER II;]CSE<2T(C’+C) ”gy ( )HL (R-E) Z |y|5ri;°{ r(o+2¢) 2r ( y) } ( )

By (3.9) and (3.15), we have

(<] 2
V2rE(W[F, A, L*) > sup {2/ IF(t)I (1- costy)dt}l/z, (3.16)

2r
I!IIS.,;g,,. (o+2¢) t

Letting ¢ — 0" in (3.16), the first inequality of (1.5) is obtained. We complete the proof
of Theorem 2.

4. Some Corollaries

Let Pr(t) = [1j-1(t — t;),t; € IR, be a polynomial of degree r with only real zeros, and
P,(D),D = %, the differential operator corresponding P,(t). Set

Wi(P) ={f € L%||P(D)f]x < 1}.
Obviously, P.(1y)f*(y) = (P(D)f)*(y),y € R, for any f € W (P,), we have
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Theorem 3 Let r € Z,. Then,
(i) when P,(0) =0,

1 —costy

su I\ < g (Wi (P,), L*
G L e S BN, )

1 [ (1—costy)dt,,
E(W,(P.), B2, I*) < sup{~ | —_S08t¥)divyz
( 1( ) To ) ye}f)i{” o IPr(t)Iz }

(ii) when P,(0) # 0,

dt

1/2
. me"

d ( ) L2)'— E(Wl(P) Bar?L ) {

Corollary Letr € Z,. If P(t) =t", then

1 [ 1—costy

oAt} < d,(Wi(IR), L?)

sup {—
|yl<l T

— t
< BWi(R), BE,,1%) < sup(L [T U=y
yeER T Jrxo

Let G be a PF density (Shortly, G € PF) and P(z) the reciprocal of the Laplace
transformation of G(z). It is well-known that P(z) may be represented as

P(z) = e~c5* b= ﬁ (1- —) e “k (4.1)

k=1 Gk

where ¢ > 0,b,ax € IR,0 < ¢+ Y32, a; 2 < co. Moreover,
1 eiuz
G = — ———du. 4.2
(=) 2x /IR P(iu) “ (42)

By [7],[12], we see IG(2)] = O(e—clzl),|z| — oo0.

for some ¢ > 0. Meanwhile, it is easy to see that m is even on IR and nonincreasing

on (0,00). Thus, we have

Theorem 4 Let G and P be defined by (4.1) and (4.2). Then

d,(B1(G), L*) = E(B:\(G), BZ,,L*) = { y2,

7o IP(W)l2

Let P(z) be defined by (4.1). Set W{(P) = {f € L? :there exists h € L! such that
(@) P(it) fA(t) = h(t) a.e. t € R}.
By Theorem 2, we have
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Theorem 5 If P(z) is defined by (4.1), then

1 [ 1—-costy <
= =242 < d, (W] (P), L*
s L, wpEE < IR,

1 (% (1 —costy)dt,y
< BOW(P), B3, 1) < supi - | Sty
< BWI(P), Byo, L7) < sup{_ | | rPaEn
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