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Abstract In this note, we prove that every positive implicative BCK-algebra X can
be imbedded in a positive implicative BCK-algebra X* with the condition (S), and X 1s
a subalgebra of X*. In particular, whenever X is implicative, so is X™.
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Let a,b be elements of a BCl-algebra X with the condition (S). We denote the greatest
element z satisfying z*a < b by aob, then o is a binary operation of X and (X,0,0) is a
commutative semigroup with identity 0.

This paper will prove that every positive implicative (or implicative) BCK- algebra can
be imbedded in a positive implicative (or implicative) BCK-algebra with the condition (S).
We call it the condition (S) extension.

It is easy to prove the following two propositions.

Proposition ¥ Let X be a BCl-algebra and End(X) the set of all BCI-endomorphisins
of X. Then End(X) with respect to the composition of mappings is a semigroup with
identity that is an identical mapping.

Proposition 2 Let X be a positive implicative BCK-algebra and a € X. Put f, : z —
z * a. Then f; is a BCI- endomorphism of X.

We call f, the right-hand multiplier of X and write S as the set consisting of all
right-hand multipliers of X, that is,

S = {fula € X}.

*Received Dec.25, 1992.
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Proposition 3 Let X be a positive implicative BCK-algebra. Then X satisfies the
condition (S) if and only if S is a sub-semigroup of End(X).

Proof Assume that X satisfies the condition (S). Put f,, fy € S. Then, for any z € X,

(fa- fo)(2) = fa(fo()) = (zxb) xa=z % (boa) = frea(z),

80 fa* Js = ftoa € S and hence S is a sub-semigroup of End(X).

Conversely assume that S is a sub-semigroup of End(X). Then, for any a,b € X, there
exists ¢ € X such that fy - f, = f., then

() (cxa)xb= fi(fa(c)) = (fsfa)(c) = fe(c) = c*xc=0;

(i) If (z*a)*b=0 then

zxc = fe(z) = (fifa)(2) = fo(fa(2)) = (z*a) ¥ b =0,

this shows that ¢ is the greatest element satisfying z * a < b, that is, X satisfies the
condition (S).

In the proof of proposition 3, we obtain f,fy = fyoa- Since X is commutative with
respect to o, we have fyoo = faob, 50 fafo = fsfa. Particularly, when b =0, fafo = faoo =
fa- This gives the following

Proposition 4 Let X be a positive implicative BCK-algebra with the condition (S).
Then the sub-semigroup S of End(X) is commutative and has an identity fo.
It is easy to see that

Proposition 5 Let X be a positive implicative (or implicative) BCK-algebra. Define the
following binary operation * on S:

fa* fo = fauy, forany abe X.

Then

(1) (S,*, fo) is also a positive implicative (or implicative) BCK- algebra.

(2) X is isomorphic to S. -

Note that S with respect to the operation of the composition of mappings might not
be closed by the proposition 3, we consider the sub-semigroup S* of End(X) generated by
S. Firstly, we define

n
z*Ha,-:(---((z*al)*a-z)*---)*an,:z:,a,-6X,iz1,2,---,n.
i=1

Then by induction, we can verify that
m

() (exTLa)+ [T% = e+ TT 6 * [T o
i=1 7=1 i=1 =1

in BCl-algebras.

n

m n m
(H) (a:*Ha,-)* H(bj*Ha,-) = (x* Hbj)*Ha,-

i=1 j=1 i=1 i=1 i=1
in positive implicative BCK-algebras.
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(111) a*Hb *Hak )=a;,t=1,2,-

ji=1 k=1
in implicative BCK-algebras.

Secondly, we define

n
Hfa.-:falfaz"'fauafa; ES;i: 1:27"')”
i=1

Now we have

Theorem 6 Let X be a positive implicative (or implicative) BCK-algebra and suppose
that S* is the sub-semigroup of End(X) generated by S, that is,

n
S — {H fa,- | fa,,. € S,1= 1,2,...’"’}.
i=1
Define a binary operation on S™ as the following

(I fa) « (T1 76,) =TI fai + T 05
i=1 j=1 i=1 j=1

Then (S*, %, fo) Is a positive implicative (or implicative)] BCK-algebra.
Proof (1) We have

((TT fao) * (XL 70;)) (T Jad) * (DT 7o) * (CTT fea) # (T £5,0)
i j i k k j

= ((H fa,-*HJ. b]-) * (H fa,-*Hk Ck)) * (H ka*H]- bJ-)

= (H f(a-'*ﬂ,- b )T, (areTT, e)) * (1;[ fckaJ_ b,)

frond H f((aI'*I_IJ' bJ’)*nl(al*Hk Ck))*nk(ckinj bJ)

= fo.
The last equality holds from

((a,.*Hbj)*rl[(al*g " TIw)
+T16) Tl T Tl [T
= a,-*Hck Hb Ual*Hck) (by (11))
Hc:c Haz*H Hb (by (
a,-*IlIa,*I:I Hb by (11))
=(((ai*af)*Haz)*I;[ck)*Iij,-:o.

I#£d
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Hfa fO—Hfa O_Hfl

fo* Hfa. fona—fo

(4) X (IL, fai) * (1, £o,) = (I1, £3,) * (I1; fa) = fo, then, for any 7,7,a; + [T, be = 0,
and b; * [ a; = 0, thus, for any z € X,

(I fa(=) 2+ [Jai= (o Ha,—) «0= (zx [[a) +« JJ(bs * [ e)
| = (x*hb HJ (by (11)) | ] |
- “Ha *Hb by (
= :HHb Ha,Hb (1))
= I*Hb = Hf,,

and hence [[; fo; = [1; fa,-
(5) For any T fur 11, fi, € 5", obviously (I, fu)(II; fs,) € S and

(((U La )AL 13,)) * (H fa)) = (11 1o,
= ((lj fa,.]‘nkak)(H fb,,*n,_a,.))]* (17,
= (I].T fop ] ) (H fi,) J
= H JoT1, w0 1,0 = fo-
Also, if ((TTg for) * (TL: fa:)) * (I1; Jo;) = fo, then (ck * [1; a;) « I1; b5 = O for any k, thus
(1;[ fe) * (T )T 7)) = I;I JewTLanT1 6 = for
that is, ([1; fo, )(I1; f1,) is the grea(.est] clement satisfying
(lkI fe) s (1) < 1 50,

So far we have already proved that S* is a BCK-algebra with the condition (S).
Now if X is positive implicative, then

(@) + AT AN+ (1) = (T fuogy o)+ (T )
= a1, e0-11,5, = Haieqr oy = Q1A = (D1 1)
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and so S* is also positive implicative. On the other hand, if X is implicative then

(T o) (AL fo) * AT 4a)) = (T 4 * AT Sy, o)
= H f(a.-*H,v(bf*Hk ak) = H fa; (by (111))

and so S” is also implicative. This completes the proof.
Proposition 5 implies that (S, *) is a subalgebra of (S, ) and note that (X, %) 22 (S, %)
we immediately have

Theorem 7 Every positive implicative (or implicative) BCK- algebra X can be imbedded
in a positive implicative (or implicative) BCK- algebra X~ with the condition (S) and X
i1s a subalgebra of X~.

Remark Extension of S to S™ in Theorem 6 is from the sub-semigroup of End(X)
gencrated by S and therefore this extension is a minimal extension in the sense of condition

().

Usiug Theorem 7, we can give another proof of one of the result of [6].

Proposition 8 ([6],Theorem 3) Let X be a non-zero implicative BCK-algebra. Then X
contains at least one maximal ideal.

Proof We need the following proposition (sce {7}, corollary 5): Every non-zero implicative
BCK-algebra with the condition (S) contains a maximal ideal M, for any a # 0 such that
a & M,.

Now if X satisfies the condition (S), clearly X contains one maximal ideal. If X does
not satisfy the condition (S), by Theorem 7, there exists an implicative BCK-algebra X*
with the condition (S) such that X € X*. Put a # 0 ¢ X. Then there exists a maximal
ideal M, of X~ such that a & M,. We prove that M = A, N X is a maximal ideal of X.

It is clear that A is a proper subset of X and 0 € M. If ry*z & M and y € X,
since M, is an ideal of X" and y € X C X", we have y € M, thusy € M, N X = M and
therefore M 1s a proper ideal of X.

For any b€ X — M, let N = (M, b) be an ideal of X generated by M and b. Since X
is positive implicative, N = {z € X[z «+ b M}. If b M,, then, by b€ X,b € M which
contradicts b € X — M. This contradiction implies that b ¢ AM,. Since M, is maximal
ideal of X* and X~ is positive implicative, we have x+b © M, for any £ € X. On the other
hand since X is a subalgebra of X* and z,b € X,z+bc X. Thusz*b € M;,NX = M and
note that N = {z € X|z «+b € M}, we immediately have N = X. This proves that M is a
maximal ideal of X.
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