Essential Subgroups of group *

W.B. Vasantha Kandasamy
(Dept. of Math., Indian Inst. of Tech., Madras-600036, India)

Keywords group, essential subgroups.

Classification AMS(1991) 20D/CCL O152

In this note we define essential subgroups of a group. A subgroup H of a group G is said to be an essential subgroup of G if for every subgroup K of G we have $K \cap H = \langle e \rangle$. Here we obtain conditions for groups to contain essential subgroups.

Definition 1 Let G be a group and H any subgroup of G. If for every subgroup K of G we have $H \cap K = e$ then we say H is an essential subgroup of G.

Example 1 Let
$$S = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = e, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = p_1, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = p_2, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = p_3, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = p_4, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = p_5 \right\}$$
. The subgroups of S_3 are $\{1, p_1\} = H_1, \{1, p_2\} = H_2, \{1, p_3\} = H_3, \{1, p_4, p_5\} = H_4$. Clearly every subgroup of S_3 is an essential subgroup of S_3 .

Definition 2 Let G be a group. H a normal subgroup of G. If for every normal subgroup K of G we have $H \cap K = \{e\}$. Then H is said to be a strongly essential subgroup of G.

Example 2 Let S_3 be as in Example 1, H_4 be the only normal subgroup of S_3 . Clearly H_4 is a strongly essential subgroup of S_3 .

Definition 3 Let G be a group. H a normal subgroup of G. If for every subgroup K of G we have $H \cap K = \{e\}$. Then we say H is a weakly essential subgroup of G.

Definition 4 Let G be a group. If every subgroup H of G is essential in G. Then G is called an essential group.

Example 3 Example 1 above is an essential group.

Definition 5 Let G be a group. If every normal subgroup H of G is strongly essential we say the group G is a strongly essential group.

^{*}Received Feb.15, 1993.

Example 4 Every abelian group G which is essential is also strongly essential.

Definition 6 Let G be a group. If every normal subgroup H of G is a weakly essential subgroup of G then we say G is a weakly essential group.

Proposition 7 Let G be an abelian group. If G is weakly essential then it is strongly essential and vice versa.

Proof Obvious from the fact that every subgroup is normal.

Proposition 8 Let G be an abelian group. The following are equivalent.

- (i) G is weakly essential
- (ii) G is essential
- (iii) G is strongly essential.

Proof Obvious from the fact that every group is normal.

Theorem 9 The permutation group S_n , n > 3 of degree n is not an essential group.

Proof To prove S_n is not an essential group it is sufficient to find a subgroup H of S_n and a subgroup K of S_n such that $H \cap K \neq e$. Let

$$H = \begin{cases} \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix} = e \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 1 & 3 & 2 & 4 & \cdots & n \end{pmatrix} = p_1, \\ \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 3 & 2 & 1 & 4 & \cdots & n \end{pmatrix} = p_2, \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 2 & 1 & 3 & 4 & \cdots & n \end{pmatrix} = p_3, \\ \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 2 & 3 & 1 & 4 & \cdots & n \end{pmatrix} = p_4, \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 3 & 1 & 2 & 4 & \cdots & n \end{pmatrix} = p_5 \end{cases}$$

be a subgroup of S_n , $K=\langle e,p_1\rangle$ is also a subgroup of S_n . We have $K\cap H=e,p_1\neq \langle e\rangle$. Hence $S_n,n>3$ is not an essential group.

Theorem 10 S_3 is a essential group, strongly essential group and a weakly essential group.

Proof Obviously from example 1, S_3 is strongly essential, weakly essential group and an essential group.

Theorem 11 $S_{n,n} > 3$ is not a weakly essential group.

Proof To prove $S_{n,n} > 3$ is not a weakly essential group we need only to show that for some normal subgroup H of S_n we have a subgroup K of S_n such that $K \cap H \neq 0$. Take A_n the alternating group to be the normal subgroup of S_n . Clearly A_n contains non-trivial subgroups. Let H be one such then $A_n \cap H = H$. So $S_{n,n} > 3$ is not a weakly essential group.

Theorem 12 S_5 is not a strongly essential group.

Proof Take in S_4 the alternating subgroup A_4 which is clearly normal. V the non cyclic

group of order 4 is also normal in S_4 and $A_4 \cap V = V$; hence S_4 is not a strongly essential group.

Theorem 13 $S_{n,n} \neq 4$ is a strongly essential group.

Proof If $n \neq 4$ we know the alternating group A_n is a simple group and a unique normal subgroup of S_n . Hence $S_{n,n} \neq 4$ is a strongly essential group as it has no other normal subgroups.

Problem Is every torsion free non abelian group

- (i) an essential group?
- (ii) strongly essential group?
- (iii) weakly essential group?

Reference

[1] M.Hall, The Theory of Groups, Macmillan, 1959.

— 352 **—**