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In this note we define essential subgruops of a gruop. A subgroup H of a group G is
said to be an essential subgroup of G if for every subgroup K of G we have K N H = (e).
Here we obtain conditions for groups to contain essential subgroups.

Definition 1 Let G be a group and H any subgroup of G. If for every subgroup K of G
we have H N K = e then we say H is an essential subgroup of G.
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Clearly every subgroup of S3 is an essential subgroup of Si.

Definition 2 Let G be a group. H a normal subgroup of G. If for every normal subgroup
K of G we have H " K = {e}. Then H is said to be a strongly essential subgroup of G.

Example 2 Let S3 be as in Example 1, H4 be the only normal subgroup of S;. Clearly
H, is a strongly essential subgroup of S3.

Definition 3 Let G be a group. H a normal subgroup of G. If for every subgroup K of
G we have H " K = {e}. Then we say H is a weakly essential subgroup of G.

Definition 4 Let G be a group. If every subgroup H of G is essential in G. Then G is
called an essential group.

Example 3 Example 1 above is an essential group.

Definition 5 Let G be a group. If every normal subgroup H of G is strongly essential
we say the group G Is a strongly essential group.
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Example 4 Every abelian group G which is essential is also strongly essential.

Definition 6 Let G be a group. If every normal subgroup H of G is a weakly essential
subgroup of G then we say G is a weakly essential group.

Proposition 7 Let G be an abelian group. If G is weakly essential then it is strongly
essential and vice versa.

Proof Obvious from the fact that every subgroup is normal.

Proposition 8 Let G be an abelian group. The following are equivalent.
(i) G is weakly essential
(ii) G is essential

(iii) G is strongly essential.
Proof Obvious from the fact that every group is normal.
Theorem 9 The permutation group S,,n > 3 of degree n is not an essential group.

Proof To prove S, is not an essential group it is sufficient to find a subgroup H of S,
and a subgroup K of S, such that H N K # e. Let
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be a subgroup of S,, K = (e,p;) is also a subgroup of S,,. We have K N H = ¢,p; # ().
Hence S,,n > 3 is not an essential group.

Theorem 10 S3 is a essential group, strongly essential group and a weakly essential
group.

Proof Obviously from example 1, S3 is strongly essential, weakly essential group and an
essential group.

Theorem 11 S,., > 3 is not a weakly essential group.

Prcof To prove S,,, > 3 is not a weakly essential group we need only to show that for
some normal subgroup H of S,, we have a subgroup K of S, such that K N H # 0. Take
Ap, the alternating group to be the normal subgroup of S,,. Clearly A,, contains non-trivial
subgroups. Let H be one such then A, " H = H. So Snn > 3 1s not a weakly essential
group.

Theorem 12 Ss is not a strongly essential group.

Proof Take in S4 the alternating subgroup A4 which is clearly normal. V the non cyclic
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group of order 4 is also normal in S; and A(NV = V; hence S4 is not a strongly essential
group.

Theorem 13 S, , # 4 is a strongly essential group.

Proof If n # 4 we know the alternating group A, is a simple group and a unique normal
subgroup of S,. Hence S,, # 4 is a strongly essential group as it has no other normal
subgroups.

Problem Is every torsion free non abelian group
(i) an essential group?
(i) strongly essential group?
(iii) weakly essential group?
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