Similar to the proof of Lemma 1, we can show that

/°°/ |fej(z)|det™1dt < C93(=s+n/2)
0 U

and then obtain

Jo(pYio(P) .o
> / / Iy(z,t)dzt~1dt < C. (34)
J=ip k=1y 0 Uk

The estimates (30),(31),(33) and (34) give ¢ < C.

Similarly, we can prove o3 < C. These complete the proof for regular atoms. For any
exceptional atom a(z), let a(z) = A(z) + ¢, where A(z) = a(z) — [; a(z)dz is a regular
atom and ¢ = [;a(z)dz. We easily check that ||Tc||ggy < C. The estimate (15) is
therefore proved.

A direct application of Theorem A is following theorem:

Theroem B Suppose T' is a multiplier operator associated to a multiplier {m(A\)}, 4
If m(A) = ||A + B]|'® for some a € R. Then T is bounded in Besov spaces.
Similar theorems in other spaces can be found in [1],[3],[4],[6] and [7].
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Abstract We set up a Hormander multiplier theorem in the Besov spaces on a compact
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Notations

Let G be a connected, simply connected, compact semisimple Lie group of dimension
n, and ¢ be the Lie algebra of G. Then g can be identified with T.(G), the tangent
space of G at the identity element e of G. Therefore, we can choose an orthonormal basis
Xi, -, X, of g. Let d be the bi-invariant metric on G, denote d(z,e) by |z| for z € G.
An exceptional atom a(z) is an L™ function satisfying:

llalleo <1, (1)
”XJaHOO < 1) ] = 172)' Ty (2)
A regular (1,00) atom is a function a(z) supported in some ball B(y, p) which satisfies:
llalle <p7", (3)
“X.Ia||‘>° < p—-l-—n, .7 = 112)""”: (4)
/ a(z)dz = 0. (5)
G
The atomic Besov space B,(G), is the space of all f € L(G) having the form
f(z) =Y crar(z) (6)

with Y~ |ex| < o0.
Where each a(z) is either a regular atom or an exceptional atom. The“norm” | f||s,
is the infimum of all expressions (3 |c|) for which we have such a representation of f(z).

*Received Apr.24, 1993.

— 477 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



It is easy to see that the space B, is a subspace of the Hardy space H(G) which is defined

. [i]ét $(9) be a radial function in A(IR') which satisfies:
$(0) = 0, (7
supp ¢ C {6 € R',|0] < 1}, (8)
[ G@pstas =c £o. (9)
Define a C> central function on G by
$e(z) = AE‘GIS(HI/\+ﬁll)d)\>c,\("=)- (10)

Then the S-functions of any function f(z) € L(G) is defined by

Saf(z) = /P | * ¢uly) |t dydt, (11)

where
Ty = {(y,t),d(y,z) < t}.
The Besov space B(G) = BY}(G) is the collection of all f € L(G) such that
1 fllB) = 1S fllLe) < oo. (12)

In our prior paper [5], it was proved that || f||B, ~ || fllB hence B(G) = B,(G). Using
this atomic characterization, we will prove here a Hormander multiplier theorem on Besov
space.

Throughout this paper, the letter C' will denote (possibly different) constants that are
independent of the essential variables in the argument, this independence will be clear
from the context.

A Holmander Multiplic Theorem

Given a bounded multi-sequence {m(A)} ea,m(A) € C, define the operator T on the
space of finite linear combination of entry function on G by

(TH(A) = m(N)F(A), AeA.
Recall that difference operators §7 are defined on sequences by
61(an) = Quy1 — Gy, 6j+1(a11) = 61(6‘1((1")) (13)

Given an [l-tuple J = (71, --, i) of non-negative integers, the partial difference operator
&7 is defined analogously on multi-sequences {m(\)}aca. The main result is the following
Hoérmander multiplier theroem:
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Theorem A Let s be the smallest even integer such that s > n/2. Suppose that m € L*

such that for l-tuple J with j1 + jo+---+ji=|J| < sandall R > 0,

Y (87 m(\)? < cREVL
R<IAI<2R

Then T is a bounded operator on B(G).

Proof By the atomic decomposition of Besov spaces, it is enough to prove that

|Tallpe) < C

uniformly for all exceptional and regular atoms a(z).

“For a regular (1,00) atom a(z), without loss of generality, we can assume that

supp @ C B(e, p). By definition of Besov spaces,

ITalse) = 158(Ta)lze) = [, [ 1Tax B (w)dyeat,
where ® is a function satisfying (7)-(9) and
/ 072(6)d0 = 0 for all multi-indices I with || < n + 1.
R

For this chosen function ®, it is easy to see that for any |I| < n,
o

I ~
(i) gé«i(o) O(16]) as 16] — 0, and (i) 7;8(6) = O(16]™") as 6]  oc.

Take radial functions 7,9 € C®(R') w1th

0< 7 <1,7(H) =1for 1/2 < |H]| < 2,5upp7 C {7 < |H] < 4);

O<1,[)<lsupp1,bc{ <|H| <2}, z P(2~ ’H)-—l

j=—o0
Thus ¥n = 9 and for any atom a(z),

m

(Ta x &) (= }: fri*bj(z) = Zf“*b
=0

where
feg(z) =Y dam(A)n( ) B(t|A + Bl)xa(z),
/\EG
bi(2) = 3 a2 rr(a)ne)
/\EG

(14)

(15)

(16)

(17)

(18)

(19)

and thus f; ; = b; = 0 if j < 0. For these f; ;’s and b;’s we have the following lemmas:
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Lemmma 1 Let s be the smallest even integer such s > n/2. Then

[T st < c, (20)

| [ ifs@P + @lel)?rdeetar < 027, (21)
where |z| = d(z,e) is the distance between z and e.

Proof First we introduce a function r(z) which was defined in [7]. Let [w] be the
order of the Weyl group For z € G,z conjugate to a point exp(£~17),7 € t*, we set
r(z) = (Cpew A7) — |W|. Then r(z) ~ |z| (see Lemma 9 of [7]). Now by Holder’s
inequality

Meslls < { [ 1fus(@) P21+ (el de} 2 | [0+ (2al)?)"de}? = Lo x I

By Lemma 9 of (7],
(L) = 2 Ci [ (Pla)* I fes@)tdz < 3 Cu@)* [ r(2)\fe(e)Pdn
k=0 G

= ZCk(?)%HT"/zft,JH%

k=0
< Y 0 3 Yo [ (m(N)
k=0 NI+ +IMI+|L|=k 2= < | A48 <2 +!

|A+ﬂl

SE(IN®=D72)6M (n (=== )8 (2(2IA + BN

Now [&(I2)t~1dt = [27 (Iy)2t~Ndt + [ (1oa)2t~"dt = A+ B.

Using (i) to estimate the term A, we have
A<C E Ck(zj)'—’k+""’—2(|N|+|LI+|M|—I+|I|) < 0,
k=0
Applying (ii) to estimate the term B, we have

B < C i Ck22jk Z ((2j)(71.—l)/,2—|L|-—|M|—-|N[—1)2
k=0 |I|+|M|+|L|+{N|=k

x 3 (@ (m)? /c_’o t-3dt < 029",

21 <A< 2

These prove (21). Similarly, f° I,1t~1dt < 2"/, But it is easy to check that (I5)? <
C277™, So Lemma 1 is proved.
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Lemma 2 Let a{z) be a regular (1,00) atom with supp a C B{e,p) and r € N be any
fixed integer. Suppose that iy € N such that 2% is sufficiently large. Then for j > i,

Cp 2= (d(z,e)" + A (2)71), if d(z,e) > 279 + p,
[bi(z)] < § Cpmtizitv+y), if d(z,€) < 279 — p,

CPj("'—r)[d(-’”, e) "+ M(A(j)_l)(a:)],, whenever 27p > 1 and d(z,e) > 2p,
where,

AV (z) = AU)(exp H) = H sup(277,sin a(H)/2) (22)
acA

and M(AG)-?) is the Hardy-Littlewood maximal function of (A))~1,
Proof Observe that b; = a x ¥; where

¥i(z) = ) day(

—_ z). 23
T () (23)

A similar argument to the proof of (6.2) in [2] proves this Lemma.

Now we are ready to prove the inequality (15) for any (1,00) atom. Take a positive
integer jo = jo(p) such that 290p < go/4 < 2%°+1p, Here ¢ is a positive number lying
in the interval (0,1) such that exp~! L, is an analytic diffeomorphism of B(z,¢¢) onto
B(0,€0), a ball centered at the origin of g(L, is the left translation by z). Put

Up={z € G:d(z,e) < 2p},

Up = {z € G:2% < d(z,e) < 2**1p},
fork=1,2,---,joand U = {z € G : d(z,e) > 2997 2p}. By definition,
Jo(p)

ITalls < C fi:o(/o (/m ITa* &4(z)|dz + /U|Ta* &,(z)|dz)t"1dt).

Fix an ip € N so that 2% is sufficiently large. Then we need only show:

Jo(r) .00
= Z/ / ITa + &,(2)|dzt~2dt < C, (24)
k=iq 0 Uy
and o
/ /|Ta*§¢(:c)|d:ct'ldt§0 (25)
0 U

with C independent of a. We will only prove (22), the proof of (23) can be completed in
a similar way. By (19) we have

3
o< E o,
=1
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where .
Jo (I’) -1

=33 /0 ” /U g+ bi(e)ldat ™, (26)

k=iy j=0

Jo(p) jo(p)

=33 /(joo/UkIft,j*bj(z)|dzt‘1dt, (27)

)=19 k=1q

oo Jo (P)

o= 3 Y [T [ ifebi@aeae (28)

J=jo+1 k=ip

We may assume that p < 1. Observe that || X7 ¥l < C for j < ig. As a result we
have [{b;]|.c < C and_then, by Lemma 1, oy < C. For o, we observe that iy < j < jo(p).
Hence 27p < 1. Let U}, be union of Uj_;, U}, and Upyy. Then for z € Uy

=2 1 -1
et < 3 [ st by + [ 1ualols(o )iy
jo(r)
+ 2 [ 1fes@sr 2y + [ 1fui(olbstu o)y

I=k42

= ZI,-(z,t).

i=1

k-2 .
/Uk L(z,t)dz < g/ulm,,-(yn(/m Ib;(y™ )| dz)dy. (29)

Notice that y € Uj(I < k — 2) and z € Uy, imply that d(y~'z,e) > p2*. We break the
~estimate of (29) into the following two cases:

Case 1 2Fp > 277, In this case by Lemma 2 we have
/ |bJ(y_1z)|dz S C(sz)2j("—r)(2kp)—r+n
U

Put ky = |In(27p)]/In2. Then 2¥ ~ (27p)~! and

Jo Jo(o) '
>, @ sC Y (P < oP
k=ig k=ko

28527
Thus by Lemma 1,
Jo(p) dolr)

oo jolp)
S, Y [ [ henataccy @osc
o Ju.

j=1g k=i J=io
2kp>2-7
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Case 2 2Fp < 277, In this case, by Lemma 2 we have

bi(y~'z)|d
[, ity e)ide

¢/Ukﬂ(d(y“lz,u)52"i+‘ } + /Ukﬂ{d(y—la:,c)>2"f+l }

< CppHI (i) 4 Cp(2iyHI(27) T < C(2 ).
Thus,
o(p) ko . i
Yo 1< Y @)V < opt AR
k=ig k=i
2%pL2-i

Therefore, we have
Jo(p) Jo(p)

. > /Ow/;} Li(z,t)dzt~tdt < C

Jj=tg k=iy
2k p<2-J

and
Jo(p) ja(p)

> /Ow /Uk h(z,t)det™dt < C. (30)

J:Io k:lo

Similarly,
> Z/ / I3(z,t)dzt™1dt < C, (31)
o Ju,

j=io k=ig

I, ,tdt</ . / bi(y~'z)|dz)dy.

J, Bt < [ 1w i e)idedy

Also by Lemma 2 we have [, |bj(y~'z)|dz < C(27p) and by Lemma 1, we have
/ / |£2,3(y)ldyt 1 de < C2I(otn/2)(9kp)=otn/2 (32)
o JO,

Thus for 2¢p > 2-7

Jo(p) Jole

> Z) /Ooo/Uklg(z,t)dzt'ldt

F=10 k=ig

2k p>2~J
Jo(p) ) ) Jo(p)

< C E(sz)zy(n—a—n/z) Z (2kp)(a—n—n/2) < C.
J=io k=ko

For 2¥p < 277 the same estimate can be obtained by using the fact Jol Welht™ldt < C
instead of (32). Therefore,

Jo(p) Jo(p)

oy /Ooo/;j L(z,t)dzt™1dt < C. (33)

j=ig k=ig
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Similar to the proof of Lemma 1, we can show that

/°°/ |fej(z)|det™1dt < C93(=s+n/2)
0 U

and then obtain

Jo(pYio(P) .o
> / / Iy(z,t)dzt~1dt < C. (34)
J=ip k=1y 0 Uk

The estimates (30),(31),(33) and (34) give ¢ < C.

Similarly, we can prove o3 < C. These complete the proof for regular atoms. For any
exceptional atom a(z), let a(z) = A(z) + ¢, where A(z) = a(z) — [; a(z)dz is a regular
atom and ¢ = [;a(z)dz. We easily check that ||Tc||ggy < C. The estimate (15) is
therefore proved.

A direct application of Theorem A is following theorem:

Theroem B Suppose T' is a multiplier operator associated to a multiplier {m(A\)}, 4
If m(A) = ||A + B]|'® for some a € R. Then T is bounded in Besov spaces.
Similar theorems in other spaces can be found in [1],[3],[4],[6] and [7].
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