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Abstract In this paper, we present a generalized Wolfe linesearch method, and apply
it to the well-known BFGS algorithin, for which we obtain the global convergence and
superlinear convergence, our results are extention of those in {1}.
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1. Introduction

We discuss the unconstrained optimization problem:

min f(z)

where f : R® — R!,f € C!, which is solved by means of iterative methods, z;4; =
Zk + Aedi(k = 0,1,---,), in which z is any given starting point, do = — Hogo, Ho is any
given n X n symetric positive definite matrix, and dy = —Hygx, He = B! is iteratived by
the following BFGS formula

BiSeSTBr | eyl
ST B Sk STy’

Bk+1 = Bk - (1)
where S = zx41 — zk, Yk = 9(zk+1) — 9(zk), g denotes the gradient Vf of f. The BFGS
algorithm is regarded as one of the most efficient algorithm in nonlinear optimization, and
used more often, so in the following sections we shall discuss its properties.

*Received Nov.12, 1993. This work is supported by the National Nutural Science Foundation of China.
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It is known to us that the Wolfe linesearch method is often used in both the theo-
retical analysis and application of algorithms. Applying Wolfe linesearch method to the
BFGS algorithm, Powell ({1]) got some nice properties of BFGS algorithm. We extend
Wolfe linesearch to a generalized Wolfe linesearch, which is described as GW linesearch
method: Select the steplength A, satisfying

f(zk41) € fzk) + €1 0k08 di, (2)

0(zks 1) ds > max{ez, 1~ (Alldell)?}ol i, (3)

where ¢; € (0,1),¢2 € (0, %),p € (—o0,1). Using this new linesearch method, we shall
extend the results of [1].

2. Some Lemmas

We give the assumption
(H) (i) the level set Ly = {z|f(z) < f(z1)}} is bounded.
(i1) the objective function f is convex on Ly.
(iii) f € C?, morcover, there exists a constant M > 0, such that

IG(=)]| < M,
where G(z) = V2f(z).
Lemma 112} Assume that (H) holds. Then there exists a positive number M, such that

|yl
yTl Sk

<My, k=1,2,---.

Lemma 2 If the sequence of nonnegative numbers my, k= 1,2, .- is such that

k
Hmj > c'l‘, 1 >0,k=1,2,--.
=1

Then limsup, m; > 0.

Proof We, by contradiction, assume that limsup, m, = 0, then, for 0 < € < ¢;, there
exist kg > 0, such that m; < ¢, for all k£ > kg. Hence, for all k > ko,

. ku—l k Cl ‘ ku—l .
1_ 1
< T mi I e (295 < (I mpe™,
=1 i=ky 7=1
k()"‘l
+o0 = lilsnsup(c—l)’c < ( H m;)e!™* < oo,
£
i=1

which is a contradiction, thus, limsup pym; > 0.
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Lemma 34 det(By4;) = det(Bk) B where det(By) denotes the determinate of By.

© BeSi’
Lemma 4 Assume that (H) (i),(iii) hold. Then

liin l|gk|| cos O = O,

—qTd
where cos 8y = “g—jﬁlﬁ“.

Proof From (H) (iii) it follows that

1
[g(:ck + '\kdk) - gk]Tdk = /\kd{/(; G(Ik + tz\kdk)dt < ’\k”dklle
On the other hand, from (3) it follows that

(9(zx + Ardi) — gk]Tdk > max{e; — 1 —HSkH”}g diy = —min{l — ¢, HSka}!J

Thus,
Mlldill* M > — min{1 - &3, |[|Sk||P Yoi d,
ie.,
1 .
ISell 2 57 min{1 — ez, [|Sell} e,
where v, = 95 d

Comparing | Sk||p with 1 — &,, we easily derive from (5) that

ISell > min{ =, ()75},

Substitute it into (2), we have

F(2re1) < £(26) — exhelldellme < £(2k) — €2 min{ s ’7k,(—)‘ =}
The assumption (H) (i) implies that limy[f(zt) — f(zx+1)] = 0. Therefore,

lim |[gi||cosOf = lim 7, = 0.
k—oo k—o0

Lemma 5 Assume that (H) (i),(iii) hold. Then

Jim max{||Sell, S/l * Hlge | cos 01 = 0.

Proof (2) implies that

A

e1elldille < f(zk) — f(zi41),
f(zk) - f("—'k+1)
(1Sl

exllgx ] cos

IA
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hence,

(z) = f(Zk+1)

o , (Mo)'7P||gk| cos 0},

0 < max{[|Sil, [Sell*7}|lgell cos 0, < max{L

where Mp is a constant satisefying ||Sk|| < Mo.
From Lemma 4 and (H) (i) it is easy to see that this lemma is true.

3. Global Convergence of BFGS Algorithm
Using the GW Linesearch Method

Theorem 1 Assume that (H) holds. Suppose that zq is any starting point, By is any
symmetric positive definite matrix, and that the sequence {z} Is generated by he BFGS
algorithm, in which the stepsize X\ is determined by the GW linesearch method (2),(3).
Then limy inf ||gxl] = 0.

Proof We, by contradiction, assume that liminfy [|gk[| > O, i.e., there exists c; > 0 such
that
llokl] = c2, k=01, ©)

From (1) we have
IBeSd? il
STBSr 4TSy’

where Tr(Bg) denotes the trace of Be. From (6), (7) and Lemma 1 we have

Tr(Bi+1) = Tr(By) (7)

2
Tl'(Bk) _ “gk“ + M,

IN

IA

c}
o1 g,Tng'

+ kM.

In
=
=
[
™

Hence
Tr(Bg+1) < Tr(By) + kM;. (8)

i 1 _ Te(Bi) + kM,

From the geometric-arithmetric mean value formula we have
k 2
ke
T 2 k
J.I;[l 7799 = ITy(By) + kM,
(4) and Lemma 3 imply that

[9(zks1) — 9)" di
Argl Higi

det(Bi+1) = det(By)
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min{1 — €3, ||S||"}

> det
> det(B) "
k .
min{l — &, ||S;|IP
ey [T 0 S
j=1 ’
k
det(Bl)
max
,':I-‘[l {1 2" |IS; H} ~ det(Bi+1)
Again using the geometric-arithmetic mean value formula, we have
Tr(B
det(Biin) < [kt

Therefore, from (8),(10), we have

ﬁ Ay det(By)n" 1 det(By)n”
j=1 1_ €2 ”SJ” T [Tx(B1) + kMy|™ T k™ [TY(By) + ML)
| det(B;)n" E
2 (= >
(6") n{[rI\r(Bl) + Ml]")l} Z €3,
where ¢3 < %min{ﬁ(ﬁ—;%, }
(9) times (11),
k
ISl coso, .
Tl man {2225l costy155117)
0303 k

SOV S L -
'1‘1‘(31) + kM — TI‘(Bl) + M,

Since
k
TT mo( B0 g conoy sy
S
e TLmax(lsl, 15517~ ) cos;.
Thus

2
62 6362 k
Ilmax S S 1-p 050 D y
i {” ” ” ” }”gJ}C [ Bl +M1]

from Lemma 2 it immediately follows that

lim sup max{||S;{}, 1}/lg;]| cos 0; > O,
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which contradicts Lemma 5. Therelore,

lim inf ||g || = 0.

Theorem 2 Assume that all of the assumptions in Theorem 1 hold, and assume in
addition that G(z) is positive definite for all £ € Lo. Then z; — z*, g¢(z*) = 0.

Proof By Theorem 1, we know

liminf [lg4] = 0.

i.e., there exists a subset K of N = {1,2,---,} such that lims_ x |lgk]| = O, since the
sequence {z;} is bounded, without loss of generality, we assume that

lim ¢, = z” z*)|| = 0.
limze =2, o=
We shall prove that limy_,, z; = z*. We, by contradiction, assume that,

limze =2, 27 #z".
kEK, ’ 7

It is easy to see that 7 € Lg,z"" € Lg, and Ly is a convex set. Since {f(zt)} is monoton-
icallly decreasing, we have

£(z) = lim f() = Jim f(ze) = (=) (12)

kEK
However, by Taylor formula and (H) we have
fz7) = f(2") + (=7 = )G (02" + (1 = 0)z"" WX — 27) > f(z7),
which contradicts (12). Therefore, limg—oo 25 = 2"

4. Superlinear convergence analysis

In this section, we shall assume that f is a unform convex function, i.e.,
(H’) there exists constants m > 0 and M3 > 0 such that

MyyTy > yTG(z)y > myTy.

In order to get the superlinear convergence of algorithms, as done by most paper, we
make the further assumption (H): the Hessian matrix G is Lipschitz continuous at z7, i.e.,
(H) there exists a positive constant L such that

iG(2) - G(z7)

|< Lljz -2

’

for all z in a neithborhood of =~
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It is easy to verify that the assumption (H’) implies the positive definiteness of G(z)
on Lo, and stonger than (H). Under the stonger assumption (H’), we get the following
better results.

Lemma 6031 Under the assumption (H’), we have

m x|(2 * 1 2
Mz, = < - < = .
g llze = 27I17 < fze) = f(27) < gl

Lemma 7 Under the assumption (H’), there must exist two constants c4 > 0 and ¢5 > 0

such that )
1|5k||

yrSe .~

[lyll®
Yi Sk

< Cq’

< cs.

Proof Noticing
1
Yk = /U G(zk + EAedic)dE Sk,
we can casily derive this Lemma from (H’).

Lemma 8 Assume that there exist ¢4 > 0,c5 > 0 such that

2 S 2
[ Y
YISk Y Sk

Then there exists cg > O such that for all k > 1, Hle cos?0; > ck.

Proof From (1) we deduce

llgxll® llgll
Tr(B; = Tr(Bg) - +eg=Tr(By) - -——-—F7—+¢
(Bia) (B) 97 Hyg ! (Be) [Hegellcos 0y~ *
k |
gl
< - < Tx(By) — et - 4k
(B) = 2 775 eosd;
(Bk+1) < 'h(Bl)+C4k, (13)
k
”91“
< Tr(B ek
Sl < me
k
el Tr(By) + cak k
< )< [Tx(B : 14
I:1 |HJgJ”COSO [ k ] —[ ( 1)+C4J ( )
From Lemma 3 and the assumptions in this Lemma we have
T ! 2
Yi Sk cs{| Sk ||
det(B = det(By)—=r—— > det(Bg)
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S > det(B)) gﬁ s

- =1 57 BiS

. “HJg]“
d“B“%Hn%wwo

k
“H]gJH det(By1)
JI=I1 llg;|| cosb; < ckdet(B;)

Using (11) and (13) we get

gl [Pr(Ben)]® _ [Te(By) + eak]”

H HgJ”COSO = nnckdet(By) T nndet(B)ct
B n n
S ) (15)

n"det(By) ‘cg

n Tr(B )+eq)"
e 1 4
where c7 > Fr max{1, ln—dL((B_l) }

(14) times (15), we obtain

HL% < ler(Tr(By) + ea)f¥,
ﬁosﬂz[ 1 ]k,

c7(Te(By1) + c4)
Select ¢g = 1/c7(Tx(By) + 04).

Theorem 3 Assume that (H’) holds. Suppose that zq is any starting point, By is any
symrmetric positive definite matrix, and that the sequence {z,} is generated by the BFGS
formula (1), in which the stepsize Ay satisfies the GW linesearch method. Then

oo
Z fze — z7|| < o0.
k=1

Proof Noticing the proof of Lemma 4 and v — 0, we have

fzi1) < for) — esmin{f, (7)) PP} = f(24) — e3ni. (16)

From (16) and Lemma 6 we have for all k£ > k;

0 < fzks1) = f(27) < flzk) ~ f(=7) — esllgell® cos® 0
< flzk) = f(z7) = esm[f (zk) = [(z")] cos® O
= (1 —egmecost 0)[f (zx) ~ f(z7))
k
< I (0 -esmeos 0;)[5(25) - f(=7)]- (17)
j=ki+1
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We notice that 1 — e3mcos? 8, > 0 due to f(zx) > f(z*), by geometric-arithmetic mean
value formula and Lemma 7 we have

k k—ky — k_ cos? b, k — nymk([1%, cos? 8;)2
H(l—esmcoszoj) < | ! eszJ—l cos J)k—h < mm (H]é_lcos i) ]k
=1 - R]

= (lﬁcﬁ)k_l”:

substitute it into (17) we get,

f(zes1) = £(27) < (1= co)* 4 (f(zr141) — f(=7)),

where 1 — ¢g > 0 due to f(zx) > f(z*).
Using Lemma 6,

Flzr =2 < (1= o)™ (f(oh,41) - £(="))

\/%(1 —ce)F k1 (f(zk,+1) — f(2*))

IN

lzes1 =27

[
> Nk — |
k=1

A

cQ.

Lemma 9 Let { By} is generated by the BFGS formula (1), where By is symmetric and
positive definite, and where y{Sk > O for all k. Furthermore assume that (H) holds. Then

S llge - ' < o0 = lim 1(BE= CEDSl
k=1 k=00 1Sl

0.

Proof See Theorem 3.2 in [7].
From Theorem 3 and Lemma 9 we can easily sec that the following Theorems is true.

Theorem 4 Let zo be a starting point for which f satisfies the assumption (H’), and
assume that (H) holds. Then for any positive definite By, the BFGS algorithm (1), with
the GW linesearch method at each step, gives the Dennis-More condition

[(Bx = G(="))Skll _

lim 0.
koo ISkl
Dennis and More!®! show that when B"_C:;:- Sell and ||Si|| are sufficiently small then

the steplength Ay = 1 satisfies the Wolfe conditions, therefore, Ay = 1 must satisfy the
GW linesearch rule. From Theorem 4 and from the well-known characterization result of
Dennis and Morel®!, we conclude that the rate of convergence of the BFGS algorithm with
the GW linesearch method is Q-superlinear if the unit steplength is always tried first.
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