Thus the conditions of Theorem 3 are satisfied. But Theorem 6 of Maiti and Babul¥ is
not applicable since f does not satisfy h{ fy, F(f)) < h(z, F(f)) for ¢ = 1€X — F(f).
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Abstract In this paper we show three results concerning the structure of the set of
subsequential limit points of a sequence of iterates of a continuous self-map of a metric

space. Our results unify and extend corresponding results of Diaz and Metcalf, Maiti
and Babu, and Park.
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1. Introduction

Diaz and Metcalfl!l obtained the structure of the set of subsequential limit points of
a sequence of iterates of a continuous self-map of a metric space (X,d). Later, Maiti and
Babul? established a similar result on maps which are contractive over two consecutive
elements of an orbit. Parkl®l extended a few results of [1,2]. Replacing the distance
function by a continuous function on X x X, Maiti and Babu gave a number of variations
and generalizations of the results in [1]. Motivated by the results of Park(®l and Maiti and
Babul¥, we establish three results on the structure of the set of subsequential limit points
of a sequence of iterates of a continuous self-map of a metric space. Our results unify and
extend corresponding results of [1-4]. Three illustrative examples are given in support of
our results.

Let f be a self-map of a metric space (X, d) and F(f) denote the set of fixed points of f.
The orbit of z € X generated by f is denoted by O(z, f) and its closure by O(z, f).L(z)
denotes the set of subsequential limit points of the sequence {f"z}72,. Let Ry be the
subspace [0, 00) of the real line with usual topology, and h a function from X x X into Rj.
For z € X and A, B C X, define d(z, A) = inf{d(z,y)|ly € A},d(A, B) = inf{d(z,y)|z €
A and y € B} and h(z, A) = inf{h(z,y)|ly € A}

2. Lemmas

In order to prove our main theorems, we first show the following Lemmas.

Lemma 1 Let f be a self-map of a metric space (X,d). Assume that there exists z € X

*Received Dec.25, 1993, Project Supproted by the Natural Science Foundation of Liaoning Province.
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such that O(z, f) is compact. Then d(f"z,L(z)) — 0 as n — oo.

Proof Suppose that d(f"z,L(z)) #» 0 as n — oco. Then there exists an ¢ > 0 and a
subsequence { "z}, of {f"z} <, such that d(f™z, L(x)) > € for ¢ > 1. The compact-
ness of O(z, f) implies that there exists a convergent subsequence { f*iz}2¢, of {f™z};.
Let f¥2 — r as i — co. Then r € L(z). Hence d(f*z,L(z)) — 0 as i — oo, which is

impossible. Thus d(f"z,L(2)) —» 0 as n — oo.

Lemuna 2 Let f be a continuous self-map of a metric space (X, d). If there exists 2 € X
such that O(z, f) is compact and L(z) C F(f), then

(1) d(f"z, f**'2) - 0 asn — oo;

(2) L(z) is nonempty, closed and connected.

Proof Suppose that (1) does not hold. Then there exists an ¢ > 0 and a subsequence
{friz}ze, of {f*z}><, such that d(f"iz, f**1z) > ¢ for : > 1. As in the proof of Lemma
1 we can find a subsequence {f* 2}, of {f™ =z}, such that f¥z — r € L(z) as i — 0.
Since f is continuous and L(z) C F(f), then d(f*z, f**tlz) — d(r,fr) = 0 as i — oo.
Consequently 0 > ¢ > 0, which is a contradiction. Hence (1) holds.

We now show that (2) holds. The compactness of O(z, f) ensures L(z) # 0. It is easy
to see that L(z) is closed. To prove the connectedness of L(z) we assume the contrary,
i.e., L(z) = AU B, where A and B are both nonempty, closed and disjoint. Note that L(z)
is a closed subset of the compact set O(z, f). Then L(z) is compact. Consequently A and
B are also compact and d(A, B) > 0. Put d(A, B) = 3t. By (1) and Lemma 1 it follows
that there exists a positive integer N such that max{d(f"z, f**'z),d(f"z, L(z))} < t for
n > N. Since L(z) = AU B is compact, there exists w € AU B such that d(f"z, AU B) =
d(ftz,w). Hw € A, then d(f"z,A) < d(f"z,w) < t. Consequently, for any n > N, either
d(ftz,A) < t or d(f"z,B) < t. But both these inequalities cannot hold simultaneously
for the same n because in that case

0<3t=d(AB)<d(f'z,A)+ d(f'z, B) < 2t

which is impossible. The set of positive integers n > N, such that d(f"z, A) < t, is not
empty, because § # A C L(z). Similarly, the set of positive integers n > N, such that
d(f"z, B) < t, is also not empty. Hence there exists a positive integer n > N such that
both d(f"z,A) < t and d(f"*'z, B) < t. Consequently,

3t =d(A,B) <d(A4, f"z)+ d(f”‘:c,f"’“a:) + d(f"‘“:c,B) < 3t
which is a contradiction. Hence L(z) is connected. Thus (2) holds.

Lemma 3 Let f be a self-map of a metric space (X, d), and F(f) nonempty and compact.
Assume that there exists a continuous function h : X x X — R, such that h(z,y) = 0
implies ¢ = y. If there exists 2 € X such that h(f"z,F(f)) — 0 as n — oo, then
L(z) C F(f).

Proof Let p € L(z). Then there exists a subsequence {f"z}X, of {f*z} L, such that
fe — p as ¢t — co. By the continuity of h and compactness of F(f) we can find
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a,, € F(f) such that h(f"z, F(f) = h(f"z,a,,) for each i > 1. Since F(f) is compact,
there exists a subsequence {ay,}; of {a,,}<,; such that a. — a € F(f) as i — oo.
Consequently, we obtain

B(f* 2, F(£)) = h(f*2,a1;) — h(p,a) = 0 as i — 00
which implies that p = a € F(f); i.e., L(z) C F(f).
3. Results and Examples
Our main results are as follows.

Theoremi 1 Let f be a continuous self-map of a metric space (X,d),h a continuous
function from X x X into Ry, such that h(z,y) = 0 implies ¢ = y. Assume that
h(f"z, f"*'z) — 0 as n — oo and O(=z, f) is compact for some ¢ € X. Then L(z) is
a nonempty, closed and connected subset of F(f), and either

(a) L(z) is a singleton, and lim,,_, . f"z exists and belonges to F(f), or

(b) L(z) is uncountable, and it is contained in the boundary of F(f).

Proof Let p € L(z). Then there exists a subsequence {f"z}>; of {2}, such that
f“z — pasi — oo. Hence h(f*z,f**'2) — h(p,fp) = 0 as i — oo, because f
and h are continuous. This implies that p = fp € F(f); i.e., L{(z) C F(f). It follows
from Lemma 2 that L(z) is a nonempty, closed and connected subset of F(f). Note that
O(z, f) is compact and L(z) C O(z, f). Hence L(z) is also compact. By Theorem 1 of
Berge [5,p.96] it follows that L(z) is either a singleton or unconntable. Clearly (a) follows
from Lemma 1. The rest of the proof is exactly the same as that of Theorem 2 of Diaz

and Metcalfl!

Remark 1 For h = d, Theorem 1 is due to Park [3,Theorem 1]. In case F(f) is compact,
Theorem 1 is due to Maiti and Babu [4,Theorem 3]. It is easy to see that Theorem 3 of
Maiti and Babul® and Theorem 6 of Diaz and Metcalfl!l are special cases of Theorem 1.
The following examples reveal that Theorem 1 extends properly Theorem 3 of Maiti and
Babu[zl, Theorem 6 of Diaz and Metcalfl] and Theorem 3 of Maiti and Babul4l.

Example 1 Let X = (-00,0] U {:|n > 1} with the usual metric. Define f: X — X
by fe = z for z € (—00,0] and f% = n.-1|—1 for n > 1. Note that F(f) = (—0,0]
and fX = (-00,0] U {%|n > 2}. Consequently F(f) and fX are not compact. Hence
Theorem 6 of Diaz and Metcalfl!] and Theorem 3 of Maiti and Babul¥! are not applicable.
Let i(z,y) = (z — y)*(|z| + 1) for (z,y) € X x X. Then

1 1 1 1 .,

) ) = ( - )*(

n+1l n+2 n+1 n+2
and O(1, f) = {0} U{%|n > 1} is compact. Obviously the conditions of Theorem 1 are
satisfied.

1
n 1

’l‘(f”]., f11+11) — h(

+1)—-0asn— o

Example 2 Let X = {1,2,3} with the metric d(z,y) = 1 if ¢ # y and d(z,y) = 0 if
z = y. Define f: X — X by f1 = 2 and f2 = f3 = 3. Then f is continuous and
O(1, f) = X is compact. It is easy to check that the following conditions
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(i) d(z,fz)+d(y, fy) < 2g(z,y),
(i) d(z, fz) + d(y, fy) < 3{d(=, fy) + d(y, fz) + d(z,9)},
(

iii) d(z, fz) + d(y, fy) + d(fz, fy) < g{d(z, fy) +d(y, fz) + d(z,y)},

(iv) d(fz, fy) < max{d(z,y), d(z, f2),d(y, f4), 5[d(z, fy) + dly, f2)]}
do not hold for z = 1 and y = 2. Thus Theorem 3 of Maiti and Babul?! is not applicable.
Let A = d. Then d(f™1, f**'1) — 0 as n — co. Hence the assumptions of Theorem 1 are
satisfied.

Theorem 2 Let f be a continuous self-map of a metric space (X,d), h a continuous
function from X x X into Ry such that h(z,y) = 0 implies z = y. Assume that O(z, f)
is compact for some z € X. If f satisfies h( fy, f>y) < h(y, fy) for each y € O(z, f) and
y # fy, then the conclusion of Theorem 1 holds.

Proof Setting a,, = h(f"z, f**'z), we have a,4; < a,. Hence a,, — r = inf{a,|n > 1}
as n — 00. Let p € L(z). Then there exists a subsequence {f*z}>2, converges to p. By
the continuity of f we have f**lz — fp and f*+%z — f?p as i — oo. Hence

r = lim h(f""z:zf”'H:c) = h(p, fp) = h(fp, fzp) = lim h(f”’“z, f”"+2:c).
1— o0 11— 0O

Suppose that p # fp. By the assumption we have h(fp, f2p) < h(p, fp), which is absurd.

Hence p = fp and a,, — 7 = 0 as n — oo. Thus Theorem 2 follows from Theorem 1.

Remark 2 In case h = d, Theorem 2 is reduced to Theorem 2 of Park[®.

Theorem 3 Let f be a continuous self-map of a metric space (X, d), and F(f) nonempty
and compact. Assume that there exists a continuous function h : X x X — Ry such that
h(z,y) = 0 implies z = y. If for some z € X,0(=z, f) is compact and h( f*z, F(f)) — 0 as
n — 00, then L(z) is a nonempty, compact and connected subset of F(f), and the rest of
the conclusion of Theorem 1 remains unchanged.

Proof Note that F(f) is compact. By Lemmas 2 and 3 it follows that L(z) is a nonempty,
compact and connected subset of F'(f). The remaining part of the proof is as in Theorem
1.

Remark 3 It is easy to see that Theorem 6 of Maiti and Babul¥ follows from Theorem
3. The following example shows that Theorem 3 is a proper generalization of Theorem 6
of Maiti and Babul4].

Example 3 Let X = {0,3} U {117|" > 1} with the usual metric. Define f : X — X by
f0=0,f1=3,f3=1and fi = nil for n > 2. Let h(z,y) = |z —yl(z + y + 1) for

2,y € X x X. Then F(f) = {0} and O(1, f) = X. Clearly F(f) and O(1, f) are compact,

and f and h are continuous. For n > 2, we have

R(F™L, F(f)) = h(%,o) L

n2

— 522 —



Thus the conditions of Theorem 3 are satisfied. But Theorem 6 of Maiti and Babul¥ is
not applicable since f does not satisfy h{ fy, F(f)) < h(z, F(f)) for ¢ = 1€X — F(f).
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