is a Hamiltonian cycle C of T(G).

Subcase 2'.2.6 A section of C_1 is $v_1, \dots, v_3, \dots, v_4$, where the vertices not written are all vertices of S_1 . Then the sequence of vertices

$$w, v_0, v_1, \dots, v_3, \dots, v_4, v_2, u, \dots, v_5, \dots, w$$

is a Hamiltonian cycle C of T(G).

By above discussion, it is easy to see that T(G) has a Hamiltonian cycle when G has n cut vertices, and so the theorem follows. \square

Corollary 2.3 For any tree G of order not less than 2, the sufficient and necessary condition of $T(G) \in H$ is that G is a path.

Proof By Theorem 1.3, $T(G) \in P$, and by Theorem 2.2, it is easy to see that the conclusion is true. \square

References

- J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, The Macmillan Press Ltd., 1976.
- [2] R.A.Brualdi, Introductory Combinatorics, North-Holland, New York, 1977.
- [3] Zhang Zhongfu, Shen Xuejun, Wang Ziguo, On the strong perfect property of total graphs, Natrue Journal, 4(1991), 384.
- [4] H.Fleschner and A.M.Hobbs, Hamiltonian total graph, Math. Nachri., 68(1975), 59-82.

关于完美全图的Hamilton-性

韩金仓 吕新忠 张忠辅(兰州铁道学院基础部,730070)

摘要

设 G(V,E) 是一个简单图, 而 $V(T(G)) = V(G) \cup E(G)$, $E(T(G)) = \{yz|y,z$ 相邻或相关, $y,z \in V(G) \cup E(G)\}$. 则称 T(G) 为 G(V,E) 的全图;若对 G 的每一导出子图 H, 有 $\chi(H) = \omega(H)$, 则称 G 是完美的. 其中 $\chi(H)$, $\omega(H)$ 分别表示 H 的色数和团数. 本文给出了完美全图是 Hamilton 图的充分必要条件.

On the Hamiltonity of Perfect Total Graphs *

Han Jincang Lu Xinzhong Zhang Zhongfu (Lanzhou Railway Institute, 730070)

Abstract Let G(V, E) be a simple graph, and $V(T(G)) = V(G) \cup E(G), E(T(G)) = \{yz|y \text{ is adjacent or incident to } z, yz \in V(G) \cup E(G)\}$. Let $\chi(H)$ and $\omega(H)$ be the chromatic number and the number of cliques of H, respectively. Then T(G) is called a total graph of G. G is called perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G. We give a necessary and sufficient condition for a perfect total graph to hamiltonian.

Keywords perfect total graph, Hamiltonity.

Classification AMS(1991)05C15/CCL O157.5

1 Introduction

Definition 1.1 Let G(V, E) be a simple graph and

$$V(T(G)) = V(G) \cup E(G),$$

 $E(T(G)) = \{yz|y \text{ is adjacent or incident to } z, yz \in V(G) \cup E(G)\}.$

Then T(G) is called a total graph of G, E(G) is called derivative vertex set.

Definition 1.2^[1] Let $\chi(G)$ and $\omega(G)$ be the chromatic number and the number of cliques of G, respectively; G[S] be an induced subgraph of G for $S \subseteq V(G)$, G is called perfect if $\chi(G[S]) = \omega(G([S]))$ for any $S \subseteq V(G)$, and it is simply represented by $G \in F$.

Theorem 1.3^[2] For any simple graph $G,T(G) \in F$, if and only if each block of G includes at most three vertices. G(V,E) is called a hamiltonian graph or we say G(V,E) have hamiltonicity if graph G(V,E) has hamiltonian cycle; it is simply represented by G-H.

We refer to [1],[2] for notations and terminologies not explained here. The graphs that we consider here are simple.

2 The Main Results

Lemma 2.1 For total graph K of order p,

$$T(K_2), T(K_3) \in H$$
.

^{*}Received Apr.7, 1994. The project supported by the NNSF of China, GPNSF and RMNSF.

The conclusion is trivial. The proof is omitted here.

Theorem 2.2 For any graph $G, T(G) \in P$, the necessary and sufficient condition of $T(G) \in H$ is that any cut vertex of G is incident to at most two K_2 -blocks.

Proof First we prove the necessary condition.

We will prove it by contradiction. If $v_0 \in V(G)$ and it is a cut vertex of G. Then suppose v_0 is incident to three K_2 -blocks $G[\{v_0, v_i\}](i = 1, 2, 3)$, where $v_i \neq v_j (i \neq j, i, j = 1, 2, 3)$. Since $T(G) \in H$, it is easy to see whether v_1, v_2, v_3 are cut vertices of G or not, there will be the following conclusion: There are just two internally-disjoint paths between v_0 and $v_i (i = 1, 2, 3)$.

Suppose that C is a Hamiltonian cycle of T(G), and in cycle C.

$$d_C(v_0) = d_C(v_i) = 2(i = 1, 2, 3).$$

Because v_0 is a cut vertex of G, by Lemma 1 and $v_1v_2, v_2v_3, v_3v_1 \in E(T(G))$, we get v_1, v_2 and v_3 are all incident to v_0 in cycle C. But by hypothesis $v_i \neq v_j (i \neq j, j = 1, 2, 3)$, this is impossible.

We can similarly prove that it is impossible for v_0 to be incident to more than three K_2 -blocks. So the necessary is true.

Now we prove the sufficient condition by induction on the number of cut vertices n of G.

When n = 0, by Theorem 1.3, G is K_2 or K_3 . From Lemma 2.1 the conclusion is true. When n = 1, suppose v_0 is the cut vertex. By Theorem 1.3 there are the following three cases.

Case 1 There is no K_2 -block in G.

From theorem 1.3, we know each block of G is K_3 at the cut vertex v_0 , the vertices of K_3 -block are denoted (according to blocks) as $1, 2; 3, 4; \dots; 2k-1, 2k$; where k is the number of blocks of K_3 in graph G. The derivative vertices are represented by $0 \cdot i (i = 1, 2, \dots, 2k)$ and $i \cdot (i + 1)(i = 1, 2, \dots, 2k - 1)$. Where $0 \cdot i$ represents those from the edges between the vertices v_0 and $i(i = 1, 2, \dots, 2k)$ in T(G); $1 \cdot (i + 1)$ represents those from the edges between vertices v_i and $i + 1(i = 1, 3, \dots, 2k - 1)$ in T(G). Then the sequence of vertices

$$egin{aligned} v_0, 0 \cdot 1, 1, 1 \cdot 2, 2, 0 \cdot 2, 0 \cdot 3, 3, 3 \cdot 4, 4, 0 \cdot 4, \cdots, 0 \cdot (2k-1), 2k-1, \ & (2k-1) \cdot (2k), 2k, 0 \cdot (2k), v_0 \end{aligned}$$

is a Hamiltonian cycle of T(G).

Case 2 G has just only one K_2 -block.

First we give K_3 -block the similar notation as case 1, the other vertices of K_2 -block are represented by 2k + 1. They have the same meaning as case 1. Then the sequence of vertices

$$v_0, 2k+1, 0\cdot (2k+1), 0, \cdot 1, 1, 1\cdot 2, 2, \cdots, 0\cdot (2k-1), 2k-1, \ (2k-1)\cdot (2k), 2k, 0\cdot (2k), v_0$$

is a Hamiltonian cycle of T(G).

Case 3 G has two K_2 -blocks.

Suppose there are kK_3 -block in G.

Subcase 3.1 When k = 0. The other two vertices of K_3 are represented by 1,2. Then the sequence of vertices

$$v_0, 1, 0 \cdot 1, 0 \cdot 2, 2, v_0$$

is a Hamiltonian cycle of T(G).

Subcase 3.2 When $k > 0.K_3$ has its vertices the same notation as case 1, the other vertices of two K_2 -blocks are represented by 2k+1, 2k+2, respaceively. Then the sequence of vertices

$$v_0, 2k+1, 0 \cdot (2k+1), 0 \cdot 1, 1, \cdots, 2k, 0 \cdot (2k), 0 \cdot (2k+2), 2k+1, v_0$$

is a Hamiltonian cycle of T(G).

By above discussion the conclusion is true for n = 1.

Suppose when the number of cut vertices is less than n, it is true that $T(G) \in H$. We now prove that $T(G) \in H$ for the number n of cut vertices.

From the property of G, and since G is a limited graph, G must have a cut vertex v_0 which is adjacent to at most two vertices, and let v_1 be a cut vertex adjacent to it. We consider the following two cases.

Case 1' v_0v_1 is a cut edge of G.

Let G_1 be an induced subgraph of G with vertices of the branch including v_1 of $G - v_0$ and vertex v_0 ; G_2 be an induced subgraph of G with vertices of the branch incoluding v_0 of $G - v_1$ and vertex v_1 . Then G_2 has one cut vertex v_0 , G_1 has n-1 cut vertices. By the induction hypothesis,

$$T(G_1), T(G_2) \in H$$
.

Let v_2 represent the derivative vertex from edge v_0v_1 of G in T(G), C_1 the Hamiltonian cycle of $T(G_i)(i=1,2)$. Since

$$d_{T(G_1)}(v_0) = d_{T(G_2)}(v_1) = 2,$$

edges v_0v_1, v_0v_2 are in the cycle C_1, v_1v_0, v_1v_2 are in the cycle C_2 . We construct a cycle C based on C_1, C_2 and let C satisfy

$$V(C) = V(C_1) \cup V(C_2),$$

 $E(C) = [E(C_1) \cup E(C_2)] \setminus \{v_0v_2, v_1v_2\}.$

Then the cycle C is a Hamiltonian cycle of T(G).

Case 2' v_0v_1 is not a cut edge of G.

By the conditions given in the theorem, G must have a vertex v_2 such that $v_0v_2, v_1v_2 \in E(G)$. Otherwise, v_0v_1 will be a cut edge of G. This is a contradiction.

Subcase 2'.1 If v_2 is not a cut vertex of G.

Let G_1 represent the induced subgraph of G with the vertex v_0 and vertices which belong to the branch of $G - v_0$ incoluding v_1, G_2 the induced subgraph of G with the vertex v_0 and vertices of $V(G)\backslash V(G - v_0); v_3, v_4, v_5$ the derivative vertices from edges v_0v_1, v_1v_2, v_2v_0 in T(G); and

$$S_0 = \{v_0, v_1, v_2, v_3, v_4, v_5\};$$

 $S_1 = V(T(G_1)) \setminus S_0;$
 $S_2 = V(T(G_2)) \setminus \{v_0\}.$

Then G_2 has at most one cut vertex G_1 has n-1 cut vertices. By the induction hypothesis, $T(G_i) \in H(i=1,2)$. From n=0 or n=1, we can suppose that v_0, u, \dots, w, v_0 is a Hamiltonian cycle G_2 of $T(G_2)$, where $u, w \in V(T(G_2))$, the other vertices (not writeen) are all vertices of $S_2 \setminus \{u, w\}$, and $v_5 u, w v_3 \in E(T(G))$.

Let C_1 represent a hamiltonian cycle of $T(G_1)$. We consider that

$$d_{T(G_1)}(v_1) = 4(i = 0, 2, 5)$$

and the vertices v_0, v_2, v_5 are not adjacent to any one of S_1 in $T(G_1)$, then we have the following six subcases.

Subcase 2'.1.1 A section of C_1 is v_3, \dots, v_1 , where the vertices not written are all vertices of S_1 . Then the sequence of vertices $w, v_3, \dots, v_1, v_4, v_2, v_5, v_0, u, \dots, w$ is a Hamiltonian cycle C of T(G).

Subcase 2'.1.2 A section of C_1 is v_3, \dots, v_4 , where the vertices not written are all vertices of S_1 . Then the sequence of vertices $w, v_3, \dots, v_4, v_1, v_2, v_5, v_0, u, \dots, w$ is a Hamiltonian cycle C of T(G).

Subcase 2'.1.3 A section of C_1 is v_1, \dots, v_4 , where the vertices not written are all vertices of S_1 . Then the sequence of vertices $w, v_3, v_1, \dots, v_4, v_2, v_5, v_0, u, \dots, w$ is a Hamiltonian cycle C of T(G).

Subcase 2'.1.4 A section of C_1 is $v_3, \dots, v_1, \dots, v_4$, where the vertices not written are all vertices of S_1 . Then the sequence of vertices $w, v_3, \dots, v_1, \dots, v_4, v_2, v_5, v_0, u, \dots, w$ is a Hamiltonian cycle C of T(G).

Subcase 2'.1.5 A section of C_1 is $v_3, \dots, v_4, \dots, v_1$, where the vertices not written are all vertices of S_1 . Then the sequence of vertices $w, v_3, \dots, v_4, \dots, v_1, v_2, v_5, v_0, u, \dots, w$ is a Hamiltonian cycle C of T(G).

Subcase 2'.1.6 A section of C_1 is $v_1, \dots, v_3, \dots, v_4$, where the vertices not written are all vertices of S_1 . Then the sequence of vertices $w, v_0, v_1, \dots, v_3, \dots, v_4, v_2, v_5, u, \dots, w$ is a Hamiltonian cycle C of T(G).

By above discussions, it is easy to see that the conclusion is true when v_2 is not a cut vertex of G.

Subcase 2'.2 Each cut vertex of G is at least adjacent to two cut vertices.

As G is a limited graph. It's easy to prove by contradiction that G must have two adjacent cut vertices v_0, v_2 which have only one common adjacent cut vertex v_1 .

Let G_1 represent the induced subgraph of G with vertices v_0, v_2 and vertices of the branch of $G - \{v_0, v_2\}$ including vertex v_1, G_2 the induced subgraph of G with vertex v_1 and vertices of the branches of $G - v_1$ including vertex v_0 and $v_2; v_3, v_4, v_5$ have the same meaning as subcase 2.1, and

$$S_0 = \{v_0, v_1, v_2, v_3, v_4\};$$

$$S_i = V(T(G_i)) \setminus \{S_0 \cup \{v_5\}\}, \quad (i = 1, 2).$$

Suppose u is a derivative vertex from one of edges incident to vertex v_2 ; w is a derivative vertex from one of edges incident to vertex v_0 , u, $w \in \{v_3, v_4, v_5\}$; and the sequence of vertices u, \dots, v_5, \dots, w represents a hamiltonian path including all vertices of S_2 and v_5 from u to w. Evidently, this path must exist.

Because G_2 has two cut vertices v_0, v_2 and G_1 has n-2 cut vertices, $T(G_1)$ must have a hamiltonian cycle C_1 by the hypothesis.

We consider C_1 as the following six subcases similarly to subcase 2'.1.

Subcase 2'.2.1 A section of C_1 is v_1, \dots, v_3 , where the vertices not written are all vertices of S_1 . Then the sequence of vertices

$$w, v_0, v_3, \dots, v_1, v_4, v_2, u, \dots, v_5, \dots, w$$

is a Hamiltonian cycle C of T(G).

Subcase 2'.2.2 A section of C_1 is v_1, \dots, v_4 , where the vertices not written are all vertices of S_1 . Then the sequence of vertices

$$w, v_0, v_3, v_1, \cdots, v_4, v_2, u, \cdots, v_5, \cdots, w$$

is a Hamiltonian cycle C of T(G).

Subcase 2'.2.3 A section of C_1 is v_3, \dots, v_4 , where the vertices not written are all vertices of S_1 . Then the sequence of vertices

$$w, v_0, v_1, v_3, \cdots, v_4, v_2, u, \cdots, v_5, \cdots, w$$

is a Hamiltonian cycle C of T(G).

Subcase 2'.2.4 A section of C_1 is $v_3, \dots, v_1, \dots, v_4$, where the vertices not written are all vertices of S_1 . Then the sequence of vertices

$$w, v_0, v_3, \dots, v_1, \dots, v_4, v_2, u, \dots, v_5, \dots, w$$

is a Hamiltonian cycle C of T(G).

Subcase 2'.2.5 A section of C_1 is $v_3, \dots, v_4, \dots, v_1$, where the vertices not written are all vertices of S_1 . Then the sequence of vertices

$$w, v_0, v_3, \cdots, v_4, \cdots, v_1, v_2, u, \cdots, v_5, \cdots, w$$

is a Hamiltonian cycle C of T(G).

Subcase 2'.2.6 A section of C_1 is $v_1, \dots, v_3, \dots, v_4$, where the vertices not written are all vertices of S_1 . Then the sequence of vertices

$$w, v_0, v_1, \dots, v_3, \dots, v_4, v_2, u, \dots, v_5, \dots, w$$

is a Hamiltonian cycle C of T(G).

By above discussion, it is easy to see that T(G) has a Hamiltonian cycle when G has n cut vertices, and so the theorem follows. \square

Corollary 2.3 For any tree G of order not less than 2, the sufficient and necessary condition of $T(G) \in H$ is that G is a path.

Proof By Theorem 1.3, $T(G) \in P$, and by Theorem 2.2, it is easy to see that the conclusion is true. \square

References

- J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, The Macmillan Press Ltd., 1976.
- [2] R.A.Brualdi, Introductory Combinatorics, North-Holland, New York, 1977.
- [3] Zhang Zhongfu, Shen Xuejun, Wang Ziguo, On the strong perfect property of total graphs, Natrue Journal, 4(1991), 384.
- [4] H.Fleschner and A.M.Hobbs, Hamiltonian total graph, Math. Nachri., 68(1975), 59-82.

关于完美全图的Hamilton-性

韩金仓 吕新忠 张忠辅(兰州铁道学院基础部,730070)

摘要

设 G(V,E) 是一个简单图, 而 $V(T(G)) = V(G) \cup E(G)$, $E(T(G)) = \{yz|y,z$ 相邻或相关, $y,z \in V(G) \cup E(G)\}$. 则称 T(G) 为 G(V,E) 的全图;若对 G 的每一导出子图 H, 有 $\chi(H) = \omega(H)$, 则称 G 是完美的. 其中 $\chi(H)$, $\omega(H)$ 分别表示 H 的色数和团数. 本文给出了完美全图是 Hamilton 图的充分必要条件.