If $\delta_k = -1$,

$$\begin{aligned} x_k v_{i_1,\dots,i_n} &= i_k v_{i_1,\dots,i_{k-1},\dots i_n}, 0 \le i_k \le \pi - 1, \\ \theta_k v_{i_1,\dots,i_{k-1},\pi-1,i_{k+1},\dots i_n} &= \mu v_{i_1,\dots,i_{k-1},0,i_{k+1},\dots,i_n}, \\ \theta_k v_{i_1,\dots,i_n} &= v_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n}, 0 \le i_k < \pi - 1, \end{aligned}$$

where

$$v_{i_1,\dots,-1,\dots,i_n} = v_{i_1,\dots,\pi-1,i_n}, v_{i_1,\dots,\pi,\dots,i_n} = v_{i_1,\dots,0,\dots,i_n}.$$

Then $V(\delta, \lambda, \mu)$ is a finite dimensional irreducible module over $A_n(K)$.

- (b) $V(\delta, \lambda, \mu) \simeq V(\delta', \lambda', \mu')$, if and only if one of the following conditions holds for each $0 \le k \le n$:
 - (i) $\delta_k = \delta' k, \lambda_k \lambda'_k \in I, \mu_k = \mu'_k$.
 - (ii) $\delta_k = 1, \delta'_k = -1, \mu_k = \mu'_k = 0$.
 - (iii) $\delta_k = -1, \delta'_k = 1, \mu_k = \mu'_k = 0.$

The proof of this theorem is similar to that of theorem 8.

Theorem 11 Let V be a finite dimensional irreducible $A_n(K)$ -module. Then V is isomorphic to one of the following modules: $V(\delta, \lambda, \mu)$ where $\lambda = (\lambda_1, \dots, \lambda_n), \mu = (\mu_1, \dots, \mu_n), \in K^n$, and $\delta = (\delta_1, \dots, \delta_n)$ with $\delta_i = 1, 0$ or -1 are as in Theorem 10.

The proof of this theorem is similar to that of theorem 9.

References

- [1] J. T. Stafford, Weyl algebras are stable free, J. Alg., 48(1977), 297-304.
- [2] J. T. Stafford, Stable structure of noncommutative noetherian rings II, J. Alg., 52(1978), 218-235.
- [3] J. T. Stafford, Module structure of Weyl algebras, J. London Math. Soc., 18:2(1978), 429-442.
- [4] L. H. Byun, A note on the module structure of Weyl algebras and simple noetherian rings, Comm. Alg., 21:3(1993), 991-998.
- [5] Dixmier, Sur les Algebres de Weyl II, Bull. Sci. Math., 94(1970), 289-301.

Weyl 代数的表示

赵开明

(中国科学院系统所, 北京 100080)

张海山

(首都师范大学数学系, 北京 100037)

摘要

设 K 是一个域. 证明了,若 chK=0,那么 n-th Weyl 代数 $A_n(k)$ 没有有限维表示. 还给出了 $A_n(k)$ 的不可约 Harish-Chandra 模的分类. 当 K 是一个特征非零的代数闭域时,给出了有限维不可约 $A_n(K)$ - 模的分类.

Representations of Weyl Algebras *

Zhao Kaiming
(Înst. of Syst. Sci., Academia Sinica, Bejing 100080)

Zhang Haishan
(Dept. of Math., Capital Normal Univ., Bejing 100037)

Abstract Let K be a field. In this paper, we prove that if $\operatorname{ch} K = 0$, then the n-th Weyl algebra $A_n(K)$ has no finite dimensional representation. And the classification of irreducible (and indecomposable) Harish-Chandra modules over the n-th Weyl algebra $A_n(K)$ is given. If K is an algebraically closed field of characteristic $\neq 0$, then the classification of finite dimensional irreducible $A_n(K)$ -modules is got.

Keywords n-th weylalgebra $A_n(k)$, irreducible modules, Harcsh- Chandra modules, finite dimensional representation.

Classification AMS(1991) 17B/CCL ()175.3

1. Introduction

Let R be a commutative ring with identity. The n-th Weyl algebra $A_n(R)$ over R is the associative algebra with identity, generated by the 2n elements $x_1, x_2, \dots, x_n, \theta_1, \theta_2, \dots, \theta_n$ subject to the relations:

$$x_i x_j - x_j x_i = 0 = \theta_i \theta_j - \theta_j \theta_i, \quad x_i \theta_j - \theta_j x_i = \delta_{i,j}. \tag{1}$$

It is clear that $A_n(R)$ has an R-basis $\{\theta_1^{i_1}\cdots\theta_n^{i_n}x_1^{j_1}\cdots x_n^{j_n}|i_1,\cdots,i_n,j_1,\cdots,j_n\in \mathbb{Z}_+\}$. See [5].

In the case that R is a field K, the n-th Weyl algebra $A_n(R)$ has been much studied. About the module structure of $A_n(R)$, J. T. Stafford did a series of thorough studies.

In the present paper, we prove that if $\operatorname{ch} K = 0$, then the *n*-th Weyl algebra $A_n(K)$ has no finite dimensional representation. And the classification of irreducible (and indecomposable) Harish-Chandra modules over the *n*-th Weyl algebra $A_n(K)$ is given. If K is an algebraically closed field of characteristic $\neq 0$, then the classification of finite dimensional irreducible $A_n(K)$ -modules is got.

2. Representations of $A_1(K)$ with chK = 0

^{*}Received Nov.7, 1993.

In this section we assume that the characteristic of K is 0.

Set $h_1 = \theta_1 x_1$. We have $[h_1, \theta_1^i x_1^j] = (i-j)\theta_1^i x_1^j$. So h_1 is an ad-semisimple element of $A_1(K)$.

Theorem 1 The 1-th Weyl algebra $A_1(K)$ has no finite dimensional representation.

Proof Suppose that V is a finite dimensional $A_1(K)$ -module. Choose an arbitrary basis $\{v_1, v_2, \cdots, v_m,\}$ of V. Assume that

$$egin{aligned} oldsymbol{x}_1 \left(egin{array}{c} v_1 \\ v_2 \\ \dots \\ v_m \end{array}
ight) = B \left(egin{array}{c} v_1 \\ v_2 \\ \dots \\ v_m \end{array}
ight); \quad oldsymbol{ heta}_1 \left(egin{array}{c} v_1 \\ v_2 \\ \dots \\ v_m \end{array}
ight) = C \left(egin{array}{c} v_1 \\ v_2 \\ \dots \\ v_m \end{array}
ight), \end{aligned}$$

where $B = (b_{i,j}), C = (c_{i,j})$ are $m \times m$ matrices over K.

From the relation $x_1\theta_1 - \theta_1x_1 = 1$ it follows that $CB - BC = I_m$. Comparing the traces on both sides, it forces that m=0, contrary to the fact m>0. Therefore $A_1(K)$ has no finite dimensional representation.

Corollary 1 The n-th Weyl algebra $A_n(K)$ has no finite dimensional representation. \square

Definition 1 A module V over $A_1(K)$ is called a Harish-Chandra module over $(A_1(K), h_1)$ if

- (a) $V = \bigoplus_{\lambda \in K} V_{\lambda}$, where $V_{\lambda} = \{v \in V | h_1 v = \lambda v\}$, (b) $\dim V_{\lambda} < \infty$ for all $\lambda \in K$.

Theorem 2 (a) For any $\lambda \in K$, let $V(\lambda) = \bigoplus_{i \in \mathbb{Z}} Kv_i$, and

$$h_1 v_i = (\lambda - i) v_i, \quad x_1 v_i = v_{i+1}, \quad \theta_1 v_i = (\lambda - i + 1) v_{i-1}.$$

Then $V(\lambda)$ is a $A_1(K)$ -module.

(b) For any $\lambda \in K$, let $V(\lambda) = \bigoplus_{i \in \mathbb{Z}} Kv_i$, and

$$h_1 v_i = (\lambda - i) v_i, \quad \theta_1 v_i = v_{i-1}, \quad x_1 v_i = (\lambda - i) v_{i+1}.$$

Then $V(\lambda)$ is a $A_1(K)$ -module.

- (c) $V(\lambda) \simeq V(\lambda_1)$, if and only if, $\lambda \lambda_1 \in \mathbf{Z}$.
- (d) $\bar{V}(\lambda) \simeq \bar{V}(\lambda_1)$, if and only if, $\lambda \lambda_1 \in \mathbf{Z}$.
- (e) $V(\lambda)$ is irreducible, if and only if, $\lambda \in \mathbf{Z}$.
- (f) $V(\lambda)$ is irreducible, if and only if, $\lambda \in \mathbf{Z}$.
- (g) $V(\lambda) \simeq \bar{V}(\lambda_1)$, if and only if, $\lambda \lambda_1 \in \mathbf{Z}$, and $\lambda \notin \mathbf{Z}$.

Proof (a) and (b) are clear.

(c) "⇒" is obvious.

" \Longrightarrow ". Let $\lambda_1 = \lambda + r, r \in \mathbb{Z}$, $V(\lambda) = \bigoplus_{i \in \mathbb{Z}} Kv_i$, $V(\lambda_1) = \bigoplus_{i \in \mathbb{Z}} Ku_i$. It is easy to check that the following linear mapping

$$\phi: V(\lambda) \to V(\lambda_1)$$
$$v_i \mapsto u_{i+r}$$

$$-160 -$$

is an isomorphism between $A_1(K)$ -modules $V(\lambda)$ and $V(\lambda_1)$.

- (d) is similar to (c).
- (e) Suppose that $V(\lambda)$ has a proper nonzero module V. Let $v_i \in V$. We have $v_j \in V$ for all $j \geq i$. Then there exists $r \in \mathbf{Z}_+$ such that $v_{i-r} \notin V$. From the relations $\theta_1^r v_i = (\lambda i + 1) \cdots (\lambda i + r) v_{i-r} \in V$, we get that $(\lambda i + 1) \cdots (\lambda i + r) = 0$. Therefore $\lambda \in \mathbf{Z}$. On the other hand, $V = \bigoplus_{i \geq 1} K v_i$ is a proper submodule of V(0). Therefore (e) is proved.
 - (f) is similar to (e).
- (g) It is easy to see that there exists no $\lambda \in K$ such that $V(0) \simeq \bar{V}(\lambda)$ and there exists not $\lambda \in K$ such that $\bar{V}(0) \simeq V(\lambda)$. So we can suppose that $\lambda, \lambda_1 \notin \mathbf{Z}$.
 - "\improx". From $V(\lambda) \simeq \bar{V}(\lambda_1)$ We can easily get $\lambda \lambda_1 \in \mathbf{Z}$.

" \Leftarrow ". If $\lambda - \lambda_1 \in \mathbf{Z}$, by (c) we can assume that $\lambda = \lambda_1$. Write $V(\lambda) = \bigoplus_{i \in \mathbf{Z}} Kv_i$ and $V(\lambda_1) = \bigoplus_{i \in \mathbf{Z}} Ku_i$. It is easy to check that the linear mapping

$$egin{aligned} \phi: & V(\lambda)
ightarrow ar{V}(\lambda) \ & v_0 \mapsto u_0 \ v_i \mapsto \lambda \cdots (\lambda - i + 1) u_i, i > 0 \ v_{-i} \mapsto (\lambda + 1)^{-1} \cdots (\lambda + i)^{-1} u_{-i}, i > 0 \end{aligned}$$

is an isomorphism from $V(\lambda)$ to $\bar{V}(\lambda)$. \Box

Let $V(0) = \bigoplus_{i \in \mathbb{Z}} K v_i$ and $\bar{V}(0) = \bigoplus_{i \in \mathbb{Z}} K u_i$. Denote the irreducible submodule $\bigoplus_{i \geq 0} K v_i$ of V(0) by V'(0), and the irreducible quotient module V(0)/V'(0) by $\bar{V}'(0)$. It is easy to show that $\bar{V}'(0) \simeq V = \bigoplus_{i \leq 0} K u_i$ which is the unique proper submodule of $\bar{V}(0)$, and $V'(0) \simeq \bar{V}(0)/V$.

If $\lambda \notin \mathbf{Z}$, set $V'(\lambda) = V(\lambda)$. Therefore we get the following irreducible Harish-Chandra modules:

$$V'(\lambda), \ \bar{V}'(0), \ \lambda \in K.$$

Theorem 3 If V is an irreducible Harish-Chandra module over $(A_1(K), h_1)$, then V is isomorphic to one of the following modules: $V'(\lambda), \bar{V}'(0), \lambda \in K$.

Proof By definition 1 we know that there exists $\lambda \in K$ such that

$$V = \bigoplus_{i \in \mathbf{Z}} V_{\lambda+i}, \quad V_{\lambda} \neq 0.$$

If $\lambda \notin \mathbb{Z}$, we get that the actions of x_1 and θ_1 on V are faithful, i.e., $0 = \{v \in V | x_1 v = 0\} = \{v \in V | \theta_1 v = 0\}$. In this case we can easily get $V \simeq V'(\lambda)$.

Suppose $\lambda \in \mathbf{Z}$. We claim that there exists $v \in V_{\lambda}$, $v \neq 0$ such that $x_1v = 0$ or $\theta_1v = 0$. Otherwise the subspace

$$V^{(0)} = \sum_{i>0} K \boldsymbol{x}_1^i v \oplus \sum_{j>0} K \theta_1^j v$$

is a submodule of V, so

$$V = \sum_{i>0} K x_1^i v \oplus \sum_{i>0} K \theta_1^j v.$$

If $\lambda = r \geq 0$, we get that $\theta_1 x_1^{r+1} v = h(\dot{x}_1^r v) = (\lambda - r)v = 0$. If $\lambda = r < 0$, we get that $\theta_1 x_1 \theta_1^{-r} v = h_1(\theta_1^{-r} v) = (\lambda - r)v = 0$. We know that the assertion is true.

If $x_1^k v = 0$ for certain $k \in \mathbb{Z}$, we replace λ by $\lambda + k$, and v by $x_1^k v$. Assume $x_1^k v \neq 0$. (The case $\theta_1^k v = 0$ is similar). If $x_1 v = 0$, we have $h_1 v = 0$, i.e., $v \in V_0$. In this case we can get $V \simeq \overline{V}'(0)$. If $\theta_1 v = 0$, we have $h_1 v = -v$, i.e., $v \in V_{-1}$. In this case we get $V \simeq V'(0)$. So theorem 3 is shown. \square

Now we consider indecomposable Harish-Chandra modules over $(A_1(K), h_1)$.

Lemma 1 Let $V = \bigoplus_{i \in \mathbb{Z}} V_{\lambda+i}$, $\lambda \in K$ be a Harish-Chandra module over $(A_1(K), h_1)$, where $V_{\lambda+i} = \{v \in V | h_1 v = (\lambda+i)v\}$. Then

- (a) If $\lambda + i \neq 0$, then the action of x_1 on $V_{\lambda+i}$ is faithful.
- (b) If $\lambda + i \neq -1$, then the action of θ_1 on $V_{\lambda+i}$ is faithful.

Theorem 4 Let V be an indecomposable Harish-Chandra modules over $(A_1(K), h_1)$. Then V is isomorphic to one of the following modules: $V(\lambda), \bar{V}(\lambda), V'(0)$ or $\bar{V}'(0)$, where $\lambda \in K$.

Proof. There exists $\lambda \in K$ such that $V = \bigoplus_{i \in \mathbb{Z}} V_{\lambda+i}$. If $\lambda \notin \mathbb{Z}$, we know that the actions of x_1 and θ_1 on V are faithful. Let $V_{\lambda} = Kv_0^{(1)} \bigoplus \cdots \bigoplus Kv_0^{(r)}$. It is easy to see that for each $s = 1, \dots, r$ the subspace

$$V^{(s)} = \sum_{i \geq 0} K x_1^i v_0^{(s)} \oplus \sum_{j \geq 0} K \theta_1^j v_0^{(s)} \simeq V(\lambda) \simeq \bar{V}(\lambda)$$

is a submodule of V. From $\lambda \notin Z$ it follows easily that $V = V^{(1)} \oplus \cdots \oplus V^{(r)}$. By the indecomposability of V we get that r = 1 and $V \simeq V(\lambda)$.

Assume that $\lambda \in \mathbf{Z}$. We choose $v \in V_{\lambda}$, $v \neq 0$. If $\lambda \geq 0$, by lemma 1, $x_1^{\lambda}v \neq 0$, $x_1^{\lambda}v \in V_0$. If $\lambda < 0$, then by lemma 1, $\theta_1^{-\lambda-1}v \neq 0$, $\theta_1^{-\lambda-1}v \in V_{-1}$, then $V_0 \neq 0$ or $V_{-1} \neq 0$.

Assume that $V_0 \neq 0$, we write $V_0 = Kv_0^{(1)} \oplus \cdots \oplus Kv_0^{(r)}$, $r \geq 1$. We define elements $v_1^{(s)}$ as follows, when $x_1v_0^{(s)} \neq 0$, let $v_1^{(s)} = x_1v_0^{(s)}$; when $x_1v_0^{(s)} = 0$ and there exists $\tilde{v}_1^{(s)} \in V_1$ such that $\theta_1\tilde{v}_0^{(s)} = v_0^{(s)}$, let $v_1^{(s)} = \tilde{v}_1^{(s)}$; when $x_1v_0^{(s)} = 0$ and there exists no $\tilde{v} \in V_1$ such that $\theta_1\tilde{v} = v_0^{(s)}$, let $v_1^{(s)} = 0$. Set $V^{(s)} = \sum_{i\geq 0} Kx_1^iv_1^{(s)} \oplus \sum_{j>0} K\theta_1^jv_0^{(s)}$. Then $V^{(s)}$ is a submodule of V. Set $T = \{v \in V_{-1} | \theta_1v = 0\}$. Choose a suitable subspace $S \in T$ such that $T = S \oplus x_1V_0$. Then $A_1(K)S$ is a submodule of V. Therefore by lemma I and $T = S \oplus x_1V_0$ we have the decomposition

$$V = V^{(1)} \oplus \cdots \oplus V^{(r)} \oplus A_1(K)S$$

of submodules. Hence $V = V^{(1)}$. So $V \simeq \bar{V}(0)$ or $\bar{V}'(0)$.

Similarly we can show that $V \simeq V(0)$ or V'(0) in the case $V_{-1} \neq 0$.

Therefore we complet the proof of the theorem.

3. Harish-Chandra representations of $A_n(K)$ with chK = 0

In this section we also assume that the characteristic of K is 0.

In
$$A_n(K)$$
, set $h_i = \theta_i x_i, 1 \le i \le n$, and $H = K h_1 \bigoplus \cdots \bigoplus K h_n$. We have
$$[h_k, \theta_1^{i_1} \cdots \theta_n^{i_n} x_1^{j_1} \cdots x_n^{j_n}] = (i_k - j_k) \theta_1^{i_1} \cdots \theta_n^{i_n} x_1^{j_1} \cdots x_n^{j_n}.$$

So $h_i(i=1,\cdots,n)$ are ad-semisimple elements of $A_n(K)$.

Definition 2 A module V over $A_n(K)$ is called a Harish-Chandra module over $(A_n(K), H)$ if

- (a) $V=\bigoplus_{\lambda\in K}V_{\lambda}$, where $\lambda=(\lambda_1,\cdots,\lambda_n)\in K^n, V_{\lambda}=\{v\in V|h_iv=\lambda_iv,i=1,\cdots,n\}$,
- (b) $\dim V_{\lambda} < \infty$ for all $\lambda \in K^n$.

Theorem 5 Let $\lambda = (\lambda_1, \dots, \lambda_n) \in K^n$.

(a) Let $V(\lambda_1^{(\delta_1)}, \dots, \lambda_n^{(\delta_n)}) = \bigoplus_{(i_1, \dots, i_n) \in \mathbb{Z}^n} Kv_{i_1, \dots, i_n}$, where $\delta_i = 0$ or 1. Define an action of $A_n(K)$ on $V(\lambda_1^{\delta_1}, \dots, \lambda_n^{\delta_n})$ as follows

If
$$\delta_k = 0$$
, $x_k v_{i_1, \dots, i_n} = v_{i_1, \dots, i_k+1, \dots, i_n}$, $\theta_k v_{i_1, \dots, i_n} = (\lambda_k - i_k) v_{i_1, \dots, i_k-1, \dots, i_n}$;
If $\delta_k = 1$, $x_k v_{i_1, \dots, i_n} = (\lambda_k - i_k + 1) v_{i_1, \dots, i_k+1, \dots, i_n}$, $\theta_k v_{i_1, \dots, i_n} = v_{i_1, \dots, i_k-1, \dots, i_n}$.
Then $V(\lambda_1^{\delta_1}, \dots, \lambda_n^{\delta_n})$ is an $A_n(K)$ -module.

- (b) $V(\lambda_1^{(\delta_1)}, \dots, \lambda_n^{(\delta_n)})$ is irreducible, if and only if, one of $\lambda_1, \dots, \lambda_n$ is an integer.
- (c) $V(\lambda_1^{(\delta_1)}, \dots, \lambda_n^{(\delta_n)}) \simeq V(\mu_1^{(\delta_1')}, \dots, \mu_n^{(\delta_n')})$, if and only if, the following two conditions hold
 - (1) $\lambda_i \mu_i \in \mathbf{Z}$, $\forall i \text{ with } 1 \leq i \leq n$,
 - (2) $\delta_i = \delta'_i$, for $\lambda_i \in \mathbf{Z}$.

The proof of this theorem is similar to that of theorem 2. We omit the details.

We denote the unique irreducible submodule of $V(\lambda_1^{(\delta_1)}, \cdots, \lambda_n^{(\delta_n)})$ by $V'(\lambda_1^{(\delta_1)}, \cdots, \lambda_n^{(\delta_n)})$.

Theorem 6 If V is an irreducible Harish-Chandra module over $(A_n(K), H)$, then V is isomorphic to one of the following modules: $V'(\lambda_1^{(\delta_1)}, \dots, \lambda_n^{(\delta_n)})$, where $(\lambda_1, \dots, \lambda_n) \in K^n$, $\delta_i = 0$ or 1.

The proof of this theorem is similar to that of theorem 3. We omit the details.

Theorem 7 If V is an indecomposable Harish-Chandra module over $(A_n(K), H)$, then V is isomorphic to a submodule of one of the following modules: $V(\lambda_1^{(\delta_1)}, \dots, \lambda_n^{(\delta_n)})$, where $(\lambda_1, \dots, \lambda_n) \in K^n, \delta_i = 0$ or 1.

The proof of this theorem is very direct and similar to that of theorem 4, we omit the detail.

4. Representations of $A_1(K)$

Where K is an algebraically closed field with ch K > 0.

In this section we assume that K is an algebraically closed field with $\operatorname{ch} K = \pi > 0$. Let $I = \{0, 1, \dots, \pi - 1\} \subset K$.

Theorem 8 Let $\lambda, \lambda', \mu, \mu' \in K$.

(a) If $\lambda \notin I$, $\mu \neq 0$, let $V(\lambda, \mu) = \bigoplus_{i \in I} Kv_i$. Define an action of $A_1(K)$ on $V(\lambda, \mu)$ as follows

$$x_1v_i = v_{i+1}, \quad 0 \le i < \pi - 1,$$

$$egin{aligned} x_1 v_{\pi-1} &= \mu v_0, \ heta_1 v_i &= (\lambda - i + 1) v_{i-1}, & 0 < i \leq \pi - 1, \ heta_1 v_0 &= rac{(\lambda + 1)}{\mu} v_{\pi-1}, \end{aligned}$$

where $v_{-1} = v_{\pi-1}, v_{\pi} = v_0$. Then $V(\lambda, \mu)$ is a finite dimensional irreducible module over $A_1(K)$.

(b) Let $V(0,\mu) = \bigoplus_{i \in I} Kv_i$. Define an action of $A_1(K)$ on $V(0,\mu)$ as follows

$$egin{array}{ll} heta_1 v_i &= -i v_{i-1}, & 0 \leq i \leq \pi-1, \ x_1 v_i &= v_{i+1}, & 0 \leq i < \pi-1, \ x_1 v_{\pi-1} &= \mu v_0, \end{array}$$

where $v_{-1} = v_{\pi-1}, v_{\pi} = v_0$. Then $V(0, \mu)$ is a finite dimensional irreducible module over $A_1(K)$.

(c) Let $\bar{V}(0, \mu) = \bigoplus_{i \in I} Kv_i$. Define an action of $A_1(K)$ on $\bar{V}(0, \mu)$ as follows

$$egin{aligned} x_1 v_i &= i v_{i-1}, & 0 \leq i \leq \pi - 1, \ heta_1 v_i &= v_{i-1}, & 0 \leq 0 < \pi - 1, \ heta_1 v_{\pi - 1} &= \mu v_0, \end{aligned}$$

where $v_{-1} = v_{\pi-1}, v_{\pi} = v_0$. Then $\bar{V}(0, \mu)$ is a finite dimensional irreducible module over $A_1(K)$.

- (d) $V(\lambda, \mu) \simeq V(\lambda', \mu')$, if and only if, $\lambda \lambda' \in I$, $\mu = \mu'$.
- (e) $V(0,\mu) \simeq V(0,\mu')$, if and only if, $\mu = \mu'$.
- (f) $\bar{V}(0,\mu) \simeq \bar{V}(0,\mu')$, if and only if, $\mu = \mu'$.
- (g) $V(0, \mu) \simeq \tilde{V}(0, \mu')$, if and only if, $\mu = \mu' = 0$.

The proof of this theorem is conventional and standard, we will not give the detail.

We can easily get the following lemma similar to lemma 1.

Lemma 2 Let $V = \bigoplus_{i \in I} V_{\lambda+i}$, $\lambda \in K$ be a Harish-Chandra module over $(A_1(K), h_1)$, where $V_{\lambda+i} = \{v \in V | h_1 v = (\lambda+i)v\}$. Then

- (a) If $\lambda + i \neq 0$, the action of x_1 on $V_{\lambda+i}$ is faithful.
- (b) If $\lambda + i \neq -1$, the action of θ_1 on $V_{\lambda+i}$ is faithful.

Theorem 9 Let V be a finite dimensional irreducible module over $A_1(K)$. Then V is isomorphic to one of the following modules: $V(\lambda), V(0, \mu), \bar{V}(0, \mu)$, where $\lambda, \mu \in K$.

Proof Since K is algebraically closed and V is finite dimensional, then there exist $\lambda \in K, v \in V$ such that $h_1v = \lambda v$. So $V = \sum_{i \in \mathbb{Z}_+} K x_1^i v + \sum_{j \in \mathbb{Z}_+} K \theta_1^j v$. Therefore $V = \bigoplus_{i \in I} V_{\lambda+i}$, where $V_{\lambda+i} = \{v \in V | h_1v = (\lambda+i)v\}$ and dim $V_{\lambda+i} < \infty$.

(I) Suppose $\lambda \not\in I$. In this case, by lemma 2 we know that the actions of x and λ on V are faithful. It is easy to see that h_1, x_1^{π} and θ_1^{π} are commutative with each other. There exists a vector $0 \neq v_0 \in V_{\lambda}$ and nonzero $\mu \in K$ such that $x_1^{\pi}v_0 = \mu v_0$. So $\bigoplus_{i \in I} Kx_1^i v_0$ is

a submodule of V. Therefore $V = \bigoplus_{i \in I} Kx_1^i v_0$. Set $v_i = x_1^i v_0, 0 \le i < \pi - 1$. We get

$$egin{aligned} heta_1 v_i &= (\lambda - i + 1) v_{i-1}, & 0 < i \leq \pi - 1, \\ heta_1 v_0 &= rac{(\lambda - 1)}{\mu} v_{\pi - 1}, \\ heta_1 v_i &= v_{i+1}, & 0 \leq i < \pi - 1, \\ heta_1 v_{\pi - 1} &= \mu v_0. \end{aligned}$$

Therefore $V \simeq V(\lambda, \mu)$.

(II) Suppose $\lambda \in I$. By lemma 2, we can assume that $\lambda = 0$. If there exist $0 \neq \bar{v} \in V_0$ such that $x_1\bar{v} = 0$, set $\bar{V}_0 = \sum_{i \in \mathbb{Z}_+} K\theta_1\bar{v}$. Then $x_1\bar{V}_0 = 0$, dim $V_0 < \infty$. There exists vector $0 \neq v_0 \in \bar{V}_0 \subset V_0$ and $\mu \in K$ such that $\theta_1 x_1^{\pi} v_0 = \mu v_0$. So $\bigoplus_{i \in I} K\theta_1^i v_0$ is a submodule of V. Therefore $V = \bigoplus_{i \in I} K\theta_1^i v_0$. Set $v_i = \theta_1^i v_0$, $0 \leq i < \pi - 1$. We get

$$egin{aligned} x_1 v_i &= i v_{i-1}, & 0 \leq i \leq \pi - 1, \\ heta_1 v_i &= v_{i+1}, & 0 \leq i < \pi - 1, \\ heta v_{\pi - 1} &= \mu v_0. \end{aligned}$$

Therefore $V \simeq \bar{V}(0, \mu)$.

If the action of x_1 on V is faithful, we can get $V \simeq V(0, \mu)$, where $\mu \in K$ in a way similar to (I). Therefore we have completed the proof. \square

5. Representations of $A_n(K)$ where K is an algebraically closed field with chK > 0

In this section we assume that K is an algebraically closed field with $\operatorname{ch} K = \pi > 0$. Let $I = \{0, 1, \dots, \pi - 1\} \subset K$. $I^n = \{(i_1, \dots, i_n) | i_1, \dots, i_n \in I\}$.

Theorem 10 Let $\lambda = (\lambda_1, \dots, \lambda_n), \lambda' = (\lambda'_1, \dots, \lambda'_n), \mu = (\mu_1, \dots, \mu_n), \mu' = (\mu'_1, \dots, \mu'_n), \in K^n$, and $\delta = (\delta_1, \dots, \delta_n)$, where $\delta_i = 1, 0$ or -1, $\delta' = (\delta'_1, \dots, \delta'_n)$, where $\delta'_i = 1, 0$, or -1.

(a) Assume $\lambda_i \notin I$, $\mu_i \neq 0$, if $\delta_i = 0$; Assume $\lambda_i = 0$, If $\delta_i = \pm 1$. Let $V(\delta, \lambda, \mu) = \bigoplus_{(i_1, \dots, i_n) \in I^n} Kv_{i_1, \dots, i_n}$. Define an action of $A_n(K)$ on $V(\delta, \lambda, \mu)$ as follows If $\delta_k = 0$,

$$\begin{split} & x_k v_{i_1, \dots, i_n} = v_{i_1, \dots, i_{k+1}, \dots i_n}, 0 \leq i_k < \pi - 1, \\ & x_k v_{i_1, \dots, i_{k-1}, \pi - 1, i_{k+1}, \dots i_n} = \mu v_{i_1, \dots, i_{k-1}, 0, i_{k+1}, \dots i_n}, \\ & \theta_k v_{(i_1, \dots, i_n)} = (\lambda_k - i_k + 1) v_{(i_1, \dots, i_{k-1}, i_k - 1, \dots, i_n)}, 0 < i_k \leq \pi - 1, \\ & \theta_k v_{i_1, \dots, i_{k-1}, 0, \dots, i_n} = \frac{(\lambda_k + 1)}{\mu_k} v_{(i_1, \dots, i_{k-1}, \pi - 1, \dots, i_n)}; \end{split}$$

if $\delta_k = 1$,

$$\begin{aligned} x_k v_{i_1,\dots,i_n} &= v_{i_1,\dots,i_{k+1},\dots i_n}, 0 \le i_k < \pi - 1, \\ x_k v_{i_1,\dots,i_{k-1},\pi-1,i_{k+1},\dots i_n} &= \mu v_{i_1,\dots,i_{k-1},0,i_{k+1},\dots i_n}, \\ \theta_k v_{i_1,\dots,i_n} &= -i_k v_{i_1,\dots,i_{k-1},i_{k-1},\dots,i_n}, 0 \le i_k \le \pi - 1; \end{aligned}$$

If $\delta_k = -1$,

$$\begin{aligned} x_k v_{i_1,\dots,i_n} &= i_k v_{i_1,\dots,i_{k-1},\dots i_n}, 0 \le i_k \le \pi - 1, \\ \theta_k v_{i_1,\dots,i_{k-1},\pi-1,i_{k+1},\dots i_n} &= \mu v_{i_1,\dots,i_{k-1},0,i_{k+1},\dots,i_n}, \\ \theta_k v_{i_1,\dots,i_n} &= v_{i_1,\dots,i_{k-1},i_{k+1},\dots,i_n}, 0 \le i_k < \pi - 1, \end{aligned}$$

where

$$v_{i_1,\dots,-1,\dots,i_n} = v_{i_1,\dots,\pi-1,i_n}, v_{i_1,\dots,\pi,\dots,i_n} = v_{i_1,\dots,0,\dots,i_n}.$$

Then $V(\delta, \lambda, \mu)$ is a finite dimensional irreducible module over $A_n(K)$.

- (b) $V(\delta, \lambda, \mu) \simeq V(\delta', \lambda', \mu')$, if and only if one of the following conditions holds for each $0 \le k \le n$:
 - (i) $\delta_k = \delta' k, \lambda_k \lambda'_k \in I, \mu_k = \mu'_k$.
 - (ii) $\delta_k = 1, \delta'_k = -1, \mu_k = \mu'_k = 0$.
 - (iii) $\delta_k = -1, \delta'_k = 1, \mu_k = \mu'_k = 0.$

The proof of this theorem is similar to that of theorem 8.

Theorem 11 Let V be a finite dimensional irreducible $A_n(K)$ -module. Then V is isomorphic to one of the following modules: $V(\delta, \lambda, \mu)$ where $\lambda = (\lambda_1, \dots, \lambda_n), \mu = (\mu_1, \dots, \mu_n), \in K^n$, and $\delta = (\delta_1, \dots, \delta_n)$ with $\delta_i = 1, 0$ or -1 are as in Theorem 10.

The proof of this theorem is similar to that of theorem 9.

References

- [1] J. T. Stafford, Weyl algebras are stable free, J. Alg., 48(1977), 297-304.
- [2] J. T. Stafford, Stable structure of noncommutative noetherian rings II, J. Alg., 52(1978), 218-235.
- [3] J. T. Stafford, Module structure of Weyl algebras, J. London Math. Soc., 18:2(1978), 429-442.
- [4] L. H. Byun, A note on the module structure of Weyl algebras and simple noetherian rings, Comm. Alg., 21:3(1993), 991-998.
- [5] Dixmier, Sur les Algebres de Weyl II, Bull. Sci. Math., 94(1970), 289-301.

Weyl 代数的表示

赵开明

(中国科学院系统所, 北京 100080)

张海山

(首都师范大学数学系, 北京 100037)

摘要

设 K 是一个域. 证明了,若 chK=0,那么 n-th Weyl 代数 $A_n(k)$ 没有有限维表示. 还给出了 $A_n(k)$ 的不可约 Harish-Chandra 模的分类. 当 K 是一个特征非零的代数闭域时,给出了有限维不可约 $A_n(K)$ - 模的分类.