If§, = -1,
TRYG iy = Vi ip—1,in 0 S ST =1,

okvilv"'v"k—lv’""lvikﬁ-lu“'in Rt VSR TR K FWIPEER )
Orvi, i = Viy iy i 1,in 0 S < T -1,

where
Vil om1, coin — Viyyom=1ns Vi ooymyedyy = Vi, 0,00 i

Then V(é, A, u) is a finite dimensional irreducible module over A.(K).

(b) V(8,A,p) ~ V(8,XN,u), if and only if one of the following conditions holds for
each 0 < k < n:

(i) 6, =8k, — ’\/k €I, = py.

(ii) 6, = 1,6, = -1, = pj, = 0.

(iii) 8 = —=1,8, =1, = pp = 0.

The proof of this theorem is similar to that of theorem 8.

Theorem 11 LetV be a finite dimensional irreducible A,(K)-module. ThenV is isomor-
phic to one of the following modules: V (6, A, u) where A = (Ay,-- -, An), 0 = (B2, s Bn), €
K", and § = (81, --,6,) with §; = 1,0 or — 1 are as in Theorem 10.

The proof of this theorem is similar to that of theorem 9.
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Abstract Let K be a field. In this paper, we prove that if ch K = 0, then the n-th
Weyl algebra A, (K) has no finite dimensional representation. And the classification of
irreducible (and indecomposable) Harish-Chandra modules over the n-th Weyl algebra
Ay (K) is given. If K is an algebraically closed ficld of characteristic # 0, then the
classification of finite dimensional irreducible A4, (K)-modules is got.

Keywords n-th weylalgebra A, (k), irreducible modules, Harcsh- Chandra modules,
finite dimensional representation.

Classification AMS(1991) 17B/CCL 0175.3

1. Introduction

Let R be a commutative ring with identity. The n-th Weyl algebra A,.(R) over R is the
associative algebra with identity, generated by the 2n elements z,,z,,---,2,,, 6,,602,---,0,
subject to the relations:

ziz; —z;z; = 0=0;0; — 0;0;, z,0;, —0;z; =6 (1)~

It is clear that A,(R) has an R-basis {0‘;' ---Gf;'z{' coemInliy, i, 1,y Jn € Dy}
See [5].

In the case that R is a field K, the n-th Wey] algebra A,,(R) has been much studied.
About the module structure of 4,,(R), J. T. Stafford did a series of thorough studies.

In the present paper, we prove that if chK = 0, then the n-th Wey! algebra A,,(K) has
no finite dimensional representation. And the classification of irreducible (and indecom-
posable) Harish-Chandra modules over the n-th Weyl algebra A, (K) is given. If K is an
algebraically closed field of characteristic # 0, then the classification of finite dimensional
irreducible A, (K )-modules is got.

2. Representations of A;(K) with chK =0

*Received Nov.7, 1993.
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In this section we assume that the characteristic of X is 0.
Set hy = 6z;. We have [k,8i27] = (i — j)8iz]. So hy is au ad-semisin.ple element of
A1(K).

Theorem 1 The 1-th Weyl algebra A,(K) has no finite dimensional representation.

Proof Suppose that V is a finite dimensional A;(K )-module. Choose an arbitrary basis
{v1,v2," -, Vm, } of V. Assume that

V1 m V1 V1

z V2 - B V2 0 U2 -C V2
1 = ;U = ,

k Um \ Um Usn Um

where B = (b; ;), C = (c, ;) are m x m matrices over K.

From the relation z,6, — 6,2, = 1 it follows that CB - BC = I,,. Comparing the
traces on both sides, it forces that m = 0, contrary to the fact m > 0. Therefore 4;(K)
has no finite dimensional representation. O

Corollary 1 The n-th Weyl algebra A,,(K) has no finite dimensional representation. O

Definition 1 A module V over A,(K) is called a Harish- Chandra module over (A;(K), h;)
if
(a) V =@ycx Va, where V) = {v € V]hiv = Av},
(b) dimV) < oo for all A € K.
Theorem 2 (a) For any A € K, let V(A) = @,z Kv;, and
hiv; = (/\ - i)‘U,‘, Z1U; = Viyy, OG1v; = (/\ -1+ 1)1),'_1.

Then V() is a A1(K)-module.
(b) For any A € K, let V(A) = @;cz Kvi, and

hiv; = (A —d)v;, v = vy, 219, = (A = )vigg.

Then V(X) is a A;( K )-module.

(c) V(A) =V (A1), ifand only if, A\ — \; € Z.

(d) V(A)~V(Ay), ifand only if, A\ — A, € Z.

(e) V(A) is irreducible, if and only if, A € Z.

(f) V(A)is Jrreduczble if and enly if, A € Z.

(g) V(A) = V(\), ifand only if, A\~ X\ € Z, and A\ ¢ Z.
Proof (a) and (b) are clear.

(c) “==" is obvious.

“==". Let Ay = A+ r,r € Z, V() = Picz Kvi, V(A1) = Biez Ku,. It is easy to
check that the following linear mapping

o: V(A) - V(\)

Vi Uiy,
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is an isomorphism between A;( A )-modules V(A) and V().

(d) is similar to (c).

(e) Suppose that V(A) has a proper nonzero module V. Let v; € V. We have
v; € V for all j > i. Then there exists r € Z, such that v, ¢ V. From the relations
07v; = (A—i4+1)-- - (A—i+r)vi, €V, weget that (A—i+1)---(A—i+47) = 0. Therefore
A € Z. On the other hand, V = @,5,; Kv; is a proper submodule of V'(0). Therefore (e)
is proved. ' -

(f) is similar to (e).

(g) It is easy to see that there exists no A € K such that V(0) = V() and there exists
not A € K such that V(0) ~ V(X). So we can suppose that A\, A\; € Z.

“—=", From V()) ~ V(A;) We can easily get A - A\, € Z.

“e=".If A= A; € Z, by (c) we can assume that A = A;. Write V() = P,z Kv; and
V(A1) = Bicz Ku;. It is easy to check that the linear mapping

¢: V(A) - V()
Uy = U
v A (A -1+ l)u,;,i >0
v A+ 1) (A ) i > 0

is an isomorphism from V() to V(A). O

Let V(0) = @;cz Kvi and V(0) = @;cz Kui. Denote the irreducible submodule
@D;>o Kv; of V(0) by V'(0), and the irreducible quotient module V(0)/V'(0) by V’(0). It
is easy to show that V'(0) ~ V = @,., Ku; which is the unique proper submodule of
V(0), and V'(0) ~ V(0)/V. -

If A ¢ Z, set V'(A) = V(A). Therefore we get the following irreducible Harish-Chandra
modules:

V'(\), V'(0), A€ K.

Theorem 3 IfV is an irreducible Harish-Chandra module over (A1(K),h1), then V is
isomorphic to one of the following modules : V'(A),V'(0),A € K.

Proof By definition 1 we know that there exists A € K such that

V = @VH;, Vi # 0.
i€Z

If A ¢ Z, we get that the actions of z; and 6; on V are faithful, i.e., 0 = {v € Wjz1v =
0} = {v € V|81v = 0}. In this case we can easily get V ~ V'(A).
Suppose A € Z. We claim that there exists v € V,v # 0 such that z;v = 0 or ;v = 0.

Otherwise the subspace . '
~ VIO =3N"Kazive Y Kbjv

i>0 i>u
is a submodule of V, so 4 ;
V= Z Kziv® Z K6v.
i>0 J>0
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If XA = r > 0, we get that 8,277 v = h{zjv) = (A~ 7)o = 0. If X = r < 0, we get that
612107 "v = hy(0;"v) = (A — rjv = 0. We know that the assertion is true.

If z¥v = 0 for certain k € Z, we replace A by A + k, and v by z¥v. Assume z§v # 0.
(The case va = 0 is similar). If z;v = 0, we have hyv = 0, i.e., v € V4. In this case we can
get V ~ V'(0). If ,v = 0, we have hyv = —v, i.e., v € V_;. In this case we get V ~ V'(0).
So theorem 3 is shown. O

Now we consider indecomposable Harish-Chandra modules over (A;(K), h;).

Lemma 1 Let V = @;cz Vati, A € K be a Harish- (‘handra module over (A;(K), hy1),
where Vy,; = {v € V|hyv = (A + i)v}. Then

(a) If A+ 1 +# 0, then the action of £1 on Vyy; is faithful.

(b) If A+ i # ~1, then the action of 6, on Vy,; is faithful.

Theorem 4 Let V be an indecomposable Harish-Chandra modules over (A1(K), hy).
Then V is isomorphic to one of the following modules: V()), V(A),V/(0) or V'(0), where
A€ K.

Proof. There exists A € K such that V = @,z Vay:. If A € Z, we know that the actions

of z; and 6; on V are faithful. Let V) = I(v&l) b - Kv((,r). It is easy to see that for
each s = 1,.--,r the subspace

Vi =3 Kaiol” @ 3 Kol ~ v(A) = T()

i>0 >0

is a submodule of V. From X ¢ Z it follows easily that V = VU@ ...@ V(). By the
indecomposability of V' we get that » =1 and V >~ V().
Assume that A € Z. We choose v € V), v # 0. If A > 0, by lemma 1, zjv # 0,
z}v € Vo. If A < 0, then by lemma 1, 0"’\‘11) # 0, 0"\‘1 V 1,then Vy #0or V3 #£0.
Assume that Vy # 0, we write V = Kv((,” b---P Kvo ,7 > 1. We define elements

as follows, when zlvo) ;é 0, let v = :clv(() ). when zlv(()")

( )

'( ) ¢ V1 such that 6?1'( °} = v, ), let v = vi ), when :clv((,") = 0 and there exists no v €
such that 6,5 = vy, let v} = 0. Set V) = ¥, Kziol) @ .., K670, Then V()
is a submodule of V. Set T = {v € V_1|6;v = 0}. Choose a suitable subspace SeT
such that T = S@ z:1Vy. Then A;(K)S is a submodule of V. Therefore by lemma I and

T = S@ 2,V we have the decomposition

It

= 0 and there exists

V=vlllg...eoVv" g A4,(K)S

of submodules. Hence V = V(). So V ~ V(0) or V'(0).
Similarly we can show that V' ~ V(0) or V’(0) in the case V_; # 0.
Therefore we complet the proof of the theorem. O

3. Harish-Chandra representations of A,(K) with chK =0

In this section we also assume that the characteristic of K is 0.
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In An(K),set h; = 6;2;,1<i<n,and H= Kh; @ ---@ Kh,. We have
(hi, 030 - @ingd' o gdn) = (4 — i)Y - Bingdt . gdn,
So hi(i = 1,---,n) are ad-semisimple elements of A, (K).

Definition 2 A module V over A, (K) is called a Harish-Chandra module over (An(K), H)
if

(3a) V= @aex Va, where X = (A, -+, \) € K™ V) = {v € Vihv = v, i =1,---,n},

(b) dimV) < oo for all A € K.

Theorem 5 Let A = (Ay,---, ;) € K™, .

(a) Let V(A(lal)’.,.,ASf'")) = @, .in)ezn Kvij.i,, where §; = 0 or 1. Define an
action of A (K) on V(AY,--. M) as follows

If5k = O,zkv;,‘...',-,, = Y, ,....ik+1....‘,‘",9“),'1,..",'“ = (/\k - ik)vil.---.ik—l.---.iur'

If6, = 1,295, ..., = (A — @+ 1)v.-,....‘;,‘.H‘...,.-,_,Bkv;l‘...‘;" = Ui i1,

Then V(A]!,- -, \6r) is an A,,(K)-module.

(b) V(/\ga'), ‘e ,/\9")) is irreducible, if and only if, one of Ay, -+, )\, is an integer.
(c) V(/\gs'), e /\Sf")) ~ V(ygs; ), o ,,u.$f;‘)), if and only if, the following two conditions
hold '

(1) \i—pi€Z,Viwith1 <i<n,

(2) 6; =&, for \; € Z.

The proof of this theorem is similar to that of theorem 2. We omit the details.

We denote the unique irreducible submodule of V' ( /\gs' ), ceey As:s")) by V' (/\26‘ ), cee, An) )-

Theorem 6 IfV is an irreducible Harish-Chandra module over (An(K),H), then V is

isomorphic to one of the following modules : V’(,\gﬁ‘),- A8 where (A1,-+,An) €
K", 6;=0orl.
The proof of this theorem is similar to that of theorem 3. We omit the details.

Theorem 7 IfV is an indecomposable Harish-Chandra module over (A, (K), H), then V

is isomorphic to a submodule of one of the following modules: V()\(ls' ), ey /\Sf")), where
(A1, -, An) € K* 68, =0o0r1.

The proof of this theorem is very direct and similar to that of theorem 4, we omit the
detail.

4. Representations of A;(K)

Where K is an algebraically closed field with chK > 0.
In this section we assume that K is an algebraically closed field with chK = 7= > 0.
Let I = {0,1,---,m— 1} C K.

Theorem 8 Let A\, )\, u,u' € K.

(a)IEXE I, n #0, let V(A 1) = @;cp Kvi. Define an action of Ay(K) on V(A p) as
follows

10 = U4, 0<i< -1,
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T1Vr-1 = MU0,
br1v; = (A—i4+1)v;y, C<2<m—1,
(A+1)

brvo = VUr-1,
where v_1 = vp_1,Vy = vo. Then V(A u) is a finite dimensional irreducible module over
A(K).

(b) Let V(0, ) = @,y K vi. Define an action of A;(K) on V(0, i) as follows

elvi: —ivi—lv OSZSW—].,
T1V; = Vi, 0§z<7r—1,
T1Up-1 = J0,

where v_1 = Vx_1,vx = vo. Then V(0,u) is a finite dimensional irreducible module over
A(K). _ ~
(c) Let V(0, p) = @;c; Kv;. Define an action of A1(K) on V(0, ) as follows

z1v; = ivq, 0<i< 7w -1,
0,v; = v;_q, 0<0<m~1,

01vr-1 = pvy,

where v_1 = vy_1,v;z = vy. Then V(O,u) is a finite dimensional irreducible module over
A (K).

(d) V(A u) = V(N,p'), ifand only if, \ = XN € I,u = p'.

(e) V(0,u) ~ V(0,4'), if and only if, p = '

(f) V(0,p) ~ V(0,4'), if and only if, u = y'.

(g) V(0, 1) ~ V(0,u"), if and only if, p = 4’ = 0.

The proof of this theorem is conventional and standard, we will not give the detail.

We can easily get the following lemma similar to lemma 1.

Lemma 2 Let V = @;c;Vayi, A € K be a Harish-Chandra module over {A1(K), hy1),
where Vy; = {v € V]hiv = (A + i)v}. Then

(a) If A+ i # 0, the action of ©; on V4, is faithful.

(b) If A + ¢ # —1, the action of §; on Vyy; is faithful.

Theorem 9 Let V be a finite dimensional irreducible module over A;(K). Then V is
isomorphic to one of the following modules: V(X),V(0, 1), V(0, ), where X\, € K.

Proof Since K is algebraically closed and V is finite dimensional, then there exist A €
K,v € V such that hyv = dv. So V = Y,z Kaziv+ ¥ cz, K6{v. Therefore V =
Dicr Vayi, where Vi = {v € Vv = (A 4 i)v} and dim V),; < oco.

(I) Suppose A ¢ I. In this case, by lemma 2 we know that the actions of z and Aon V
are faithful. It is easy to see that hq,z] and 6] are commutative with each other. There
exists a vector 0 # vy € V) and nonzero pu € K such that zTvy = pvy. So D¢y Kziv is
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a submodule of V. Therefore V = @;; Kzivo. Set v; = zivp,0 < i < m — 1. We get

brv;=(A—i+1)v_1, 0<i<m—1,
A-1

f1vp = (*,, )vn—l,

219 = vy, 0<i<w—1,

T1Vr—1 = HVg.

Therefore V ~ V(A, p).

(II) Suppose A € I. By lemma 2, we can assume that A = 0. If there exist 0 # v € Vo
such that ;9 = 0, set ¥ = Zi€z+ K6,9. Then 2,V = 0,dim V4 < oo. There exists vector
0#£w € Vo C Vp and # € K such that 6127vg = pvy. So P Kﬁivo is a submodule of
V. Therefore V = @;c; K0ivo. Set v; = 0vy,0 < i < 7 — 1. We get

z1v; =, 0< 1< r—1,
01'0,':1.'(.*.1, 05i<7f—1,
H’U,r_l = HVp.

Therefore V ~ V(0, u).
If the action of #; on V is faithful, we can get V ~ V(0,u), where x € K in a way
similar to (I). Therefore we have comnpleted the proof. O

5. Representations of A,(K) where K is an algebraically closed field with
chK >0 )

In this section we assume that K is an algebraically closed field with chK = = > 0.
Let I ={0,1,---,7 =1} C K. I" = {(41, -, )|t1, "+, n € I}.

Theorem 10 Let A = (Ay,---,Ax), A = (A, -+, AL ) = (1, pin ), 1/ = (17,77 i), €

K", and § = (6,---,8,), where §; = 1,0 or -1, §' = (81,---,6,), where §; = 1,0, or -1.
(a) Assume A\; € I, p; #0,if §; = 0; Assume \; = 0, If §; = £1 . Let V(6,A,p) =
@D, - in)ern Kviy,.i,. Define an action of A,,(K) on V (4, A, ) as follows
If &, = 0,

TLU iy = Uiy ig41,iny 0 S 3 < — 1,

zkv,-h...,;k_ll,,_l,ik“'...;,_ Sl LA TR PR KPR
Hkv(ih.,.,,-") = (Ak -4, + l)v,-l-i...,,-k_,‘,-k_l_...,,-",o <4 <7m-1,
0k'(),'h...yik_l'(),...Yi" = M'v(il‘...‘;k_l n=1,4n)?

a3 o

ifép =1,

ZLVip iy = Vi g lomin 0 S i < T — 1,
TrViyonip g, m=Yiggrtn — MUy de o Odggpoin

Okviy iy = —WViy i =1ein, 0 S5 < = 1
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If§, = -1,
TRYG iy = Vi ip—1,in 0 S ST =1,

okvilv"'v"k—lv’""lvikﬁ-lu“'in Rt VSR TR K FWIPEER )
Orvi, i = Viy iy i 1,in 0 S < T -1,

where
Vil om1, coin — Viyyom=1ns Vi ooymyedyy = Vi, 0,00 i

Then V(é, A, u) is a finite dimensional irreducible module over A.(K).

(b) V(8,A,p) ~ V(8,XN,u), if and only if one of the following conditions holds for
each 0 < k < n:

(i) 6, =8k, — ’\/k €I, = py.

(ii) 6, = 1,6, = -1, = pj, = 0.

(iii) 8 = —=1,8, =1, = pp = 0.

The proof of this theorem is similar to that of theorem 8.

Theorem 11 LetV be a finite dimensional irreducible A,(K)-module. ThenV is isomor-
phic to one of the following modules: V (6, A, u) where A = (Ay,-- -, An), 0 = (B2, s Bn), €
K", and § = (81, --,6,) with §; = 1,0 or — 1 are as in Theorem 10.

The proof of this theorem is similar to that of theorem 9.
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