Theorem 4 Extreme disconnectedness and s-closedness are invariant under homeomorphic GOHs.

References

- [1] Wang Guojun, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47(1992), 351-376.
- [2] Wang Guojun, On S-closed space, Acta Mathematica Sinica, 24:1(1981), 55-63.
- [3] Wang Guojun, S-closed symmetric topological molecular lattices, Journal of Fuzzy Mathematics, 2:2(1994), 449-461.
- [4] Sun Shuhao, Tychonoff embedding theorem on completely distributive lattices, Chinese Annals of Mathematics, 12A:3(1991), 365-372.
- [5] Chen Yixiang, A note of regularity on completely distributive lattices, Chinese Quarterly Journal of Mathematics, 9:1(1994), 60-64.

拓扑分子格的极不连通性和 S- 闭性

陈 仪 香 (苏州大学数学科学院, 苏州 215006)

摘要

Extreme Disconnectedness and S-closedness of Topological Molecular Lattice *

Chen Yixiang

(College of Math. Science, Suzhou University, Suzhou 215006)

Abstract We introduce the concepts of extreme disconnectedness and S-closedness of topological molecular lattices by using the pseudo-negation on complete co- Heyting algebra. Results include: (1) every S-closed regular topological lattice is extremally disconnected; (2) both extreme disconnectedness and S-closedness are invariant under homeomorphic GOHs.

Keywords topological molecular lattice, extreme disconnectedness, S-closedness.

Classification AMS(1991) 54A10,06F30/CCL ()159

1. Preliminary

Throughout this paper, L(M) (or L) always denotes a completely distributive complete lattice, M the set of molecules. 1 and 0 are the greatest and least elements of L(M) respectively. $\eta \subset L$ is called a co-topology of L, if η satisfies: (1) $0, 1 \in \eta$; (2) η is closed under finite sups and artribary infs. Further $(L(M), \eta)$ is called a topological molecular lattice (briefly: TML). Clearly, η is a complete co-Heyting algebra. Therefore there is the pseudo-negation * in η , as follows.

 $\forall P \in \eta$, set $P^* = \land \{Q \in \eta : P \lor Q = 1\}$. It has the following properties:

 $\forall P, P_i \in \eta, \mathcal{F} \subset \eta$, then

- (1) $P^* \vee P = 1$;
- (2) if $P_1 \leq P_2$ then $P_2^* \leq P_1^*$;
- (3) $P_2^* \le P_1$ if and only if $P_1^* \le P_2$; and
- (4) *** = *;
- (5) $(\wedge \mathcal{F})^* = \vee \mathcal{F}^*$.

Proposition 1 Suppose (X,\mathcal{U}) is a topological space, $(\mathcal{P}(X),\mathcal{U}')$ is the TML of (X,\mathcal{U}) . Then $\forall P \in \mathcal{U}', P^* = P'^-$.

Remark In general, $P \wedge P^* \neq 0, P \neq P^{**}, (P \vee Q)^* \neq P^* \wedge Q^*$.

Proposition 2 η is a Boolean algebra if and only if $\forall P \in \eta, P = P^{**}$.

^{*}Received Jun.28, 1993.

 $P \in \eta$ is called regular if $P = P^{**}$. Then the notation η_{**} denotes the set of all regular elements of η with the induced order from L.

Proposition 3 η_{**} is a Boolean algebra.

Proposition 4 The following conditions are equivalent:

- (1) η_{**} is a sublattice of η .
- (2) $\forall P \in \eta, P^* \wedge P^{**} = 0.$
- (3) De Morgan law $(P \vee Q)^* = P^* \wedge Q^*$, is true $\forall P, Q \in \eta$.
- (4) $\forall P \in \eta_{**}$, there exists Q such that

$$P \vee Q = 1, P \vee Q = 0.$$

2. Extreme Disconnectedness, S-closedness

Definition 1 $TML(L(M), \eta)$ is called an extremally disconnected TML, if $\forall P \in \eta$,

$$P^* \wedge P^{**} = 0$$
.

Theorem 1 Suppose $(L(M), \eta)$ is a topological molecular lattice. Then the following conditions are equivalent.

- (1) $(L(M), \eta)$ is extremally disconnected.
- (2) $\forall P \in \eta, P^* \wedge P^{**} = 0.$
- (3) $\forall P,Q \in \eta, (P \vee Q)^* = P^* \wedge Q^*.$
- (4) η_{**} is a sublattic of η .
- (5) $\forall P \in \eta_{**}$, there exists a $Q \in \eta$ such that

$$Q \vee P = \dot{1}, P \wedge Q = 0.$$

Proposition 5 Topological space (X, U) is a extremally disconnected space if and only if the topological molecular lattice $(\mathcal{P}(X), U')$ is extremally disconnected.

Suppose $(L(M), \eta)$ is a TML. Then η_{**} is closed under finite sups. η_{**} is a base of some co-topology, the co-topology is said to be the semiregularization of η , denoted by η_{*} . Clearly $\eta_{*} \subset \eta$.

Proposition 6 (1) $\forall P \in \eta_*, P_{\eta_*}^* = P_{\eta}^*, P_{\eta_{**}}^{**} = P_{\eta}^{**};$

(2) $\eta_{**} = \eta_{***}$, that is, η_* has a base consisting of regular elements.

Let $\phi \subset L$. If $\forall \phi = 1$, then we say that ϕ is a cover of L. The meaning of closed cover and regular cover is clear.

Definition 2 $TML(L(M, \eta))$ is called S-closed if every regular cover has a finite subcover.

Proposition 7 Topological space (X, U) is S-closed if and only if its $TML(\mathcal{P}(X), U')$ is S-closed.

Corolary Suppose (X, U) is a topological space. Then the followings are equivalent:

- (1) (X, U) is an extremally disconnected space.
- (2) every regular open set is a regular closed set.
- (3) every regular closed set is a regular open set.
- (4) for each closed set $F, F'^- \cap F'^{-'-} = \emptyset$.

Proposition 8 TML(L(M), η) is S-closed if and only if its semiregularization (L(M), η_*) is also S-closed.

Dr.Su in [4] introduced the concept of regular TML. The author in [5] gave a characterization of regular TML, as follows:

 $\mathbf{TML}(L(M), \eta)$ is called regular if and only if $\forall P \in \eta, P = \land \{Q \in \eta : P \land Q^* = 0\}$.

Theorem 2^[5] $TML(L(M), \eta)$ is regular if and only if $\forall x \in M$ and $F \in \eta$, if $x \not\leq F$, then there exist $P, Q \in \eta$ such that $x \not\leq P$ and $P \wedge Q = 1$, $F \wedge Q = 0$.

Theorem 3 Every both S-closed and regular TML is extremally disconnected.

Proof Taking $P \in \eta$, then $P = \wedge \{Q \in \eta : P \wedge Q^* = 0\}$. Thus

$$P^* = \vee \{Q^* \in \eta : P \wedge Q^* = 0\},$$

and

$${P^{**}} \cap {Q^* \in \eta : P \land Q^* = 0}$$

is a regular cover of L. So there exist Q_1^*, \dots, Q_n^* such that

$$P^{**} \vee Q_1^* \vee \cdots \vee Q_n^* = 1,$$

where $P \wedge Q_i^* = 0, i = 1, \dots, n$. Since $P^{**} = P^{***} \leq Q_1^* \vee \dots \vee Q_n^*$, then

$$P^* \wedge P^{**} \leq P^* \wedge P \leq (Q_1^* \vee \cdots \vee Q_n^*) \wedge P.$$

So $P^* \wedge P^{**} = 0$, $(L(M), \eta)$ is extremally disconnected.

3. Generalized Order-Homomorphism

GOH(Generalized Order-Homomorphism) $f:(L_1(M_1),\eta_1)\to (L_2(M_2),\eta_2)$ is called to be continuous, if $\forall P\in\eta_2, f^{-1}(P)\in\eta_1$. Bijective GOH f is called a homeomorphism if and only if f and f^{-1} are continuous. GOH f is called closed if for each closed element P, f(P) is closed.

Lemma 1 Bijective GOH is a homeomorphism if and only if it is both continuous and closed GOH.

Lemma 2 Suppose $f:(L_1(M_1),\eta_1)\to (L_2(M_2),\eta_2)$ is a hemeomorphisc GOH, then

- (1) $\forall P \in \eta_2, f^{-1}(P^*) = (f^{-1}(P))^*;$
- (2) $\forall A \in \eta_1, f(A)^* = f(A^*);$
- (3) $A \in \eta_1, A$ is regular if and only if f(A) is regular;
- (4) $P \in \eta_2, P$ is regular if and only if $f^{-1}(P)$ is regular.

Theorem 4 Extreme disconnectedness and s-closedness are invariant under homeomorphic GOHs.

References

- [1] Wang Guojun, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47(1992), 351-376.
- [2] Wang Guojun, On S-closed space, Acta Mathematica Sinica, 24:1(1981), 55-63.
- [3] Wang Guojun, S-closed symmetric topological molecular lattices, Journal of Fuzzy Mathematics, 2:2(1994), 449-461.
- [4] Sun Shuhao, Tychonoff embedding theorem on completely distributive lattices, Chinese Annals of Mathematics, 12A:3(1991), 365-372.
- [5] Chen Yixiang, A note of regularity on completely distributive lattices, Chinese Quarterly Journal of Mathematics, 9:1(1994), 60-64.

拓扑分子格的极不连通性和 S- 闭性

陈 仪 香 (苏州大学数学科学院, 苏州 215006)

摘要