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Abstract In thispaper, we first prove some global existence theorams for differential inclusions by
using viability theorem, L ygounov’s seocond method and comparison theorem, and then discuss the sta-
bility of slutions for differential inclusion
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1 Introduction

In recent years the study of differential inclusions has been devoloped considerably, w ith gp-

[4]

plications to mathematical econom ics*"*, nonsnooth dynamicsand optimal control'¥, etc A I

differential inclusion provides amathematical tool for studing differential equation w ith a discon-
tinuous right handside'®’

Recently, Seach'*”’

and Taniguchi'® proved that the differential inclusion

x  F(t,x), x(0) = xo (*)

has global solution defined on [to, ® ) and they also considered asymptotic equilibrium of solution
for differential inclusion (* ). Roxi'® considered theweakly (strongly) stability for general con-
trol systens A long the same lines, T. F. Bridgland Jr'® studied weak stability of solution for
differential inclusion (* ) under some strongly assumptions W e alo mention that [8] discussed
stability for differential equatoin w ith discontinuous right-hand sides

The purpose of thispaper is to present global existence theorem s and stability of lution for
differential (* ) by using viability theorem, L ygpunov’s second method and comparison theorem.

2 Global existence of solution to differential inclusion

Let KCR"beasubsetof R"and x K. The ocontingent cone T« (x) isdefined by
T« () = {v|lm infdc(x + hv)/h= 0}
h-

"Received M ar. 14, 1994
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A set-valuedmap F:R"-R" iscalled upper samicontinuousat x Dom (F) if and
only if for any neighborhood U of F (x) there exists "> 0 such that for every x' B
(x, ™, F(x')CU. 1t is said to be upper samicontinuous if and only if it is upper
sanicontinuous at any point of Dom (F).

Let (@, 2) beameasurable pace and F: Q—R" be a set-valued map w ith closed
mages Themap F iscalledmeasurable if the inverse mage of each open set ismea-
surable set

A set-valuedmap F:Rx R"~R" is said to be linear grow th if there isC (1) L
(R",R") such that

[Ftx)||= sup |[V]||[v Fx)=c@®@+ [[x]|)onr"x R"

LetV:R">R {+ o} be anontrivial extended function and x belong to its do-

main W e shall say that the functionD : v(x) from R"to R + o defined by
DV (x) (u) = Im inf(1/h) (v (x + hu') - V (x))

is the contingent epiderivative of V at x in the direction u

The functionV is contingently epidifferentiable at x if and only if D:V (x) (0)= Q It is said
episleek (at x) if itsepigraph is sleek (at (x,V (x)) i €, Tev (x,V (x)) isupper samicontinuous
at (x,v (x)).

If V isL ipsctiz at apoint of its domain, thenD :V (x) (u) is the low er D ini-derivative

W e define in a smilarway the contingent hypoderivativeD : V (x) from R">R + o of V:
R">R + o at apoint x of its domain by

D.V(x)()=-D:( V)Kx) (@)= Im S}{Q(l/h) v (x+ hu') - VvV (x)).

ou
W e consider the differential inclusion

x  F(tx (), x(0) = xo, (2 1)
and the comparion differential equation
u(t) = g(t,u), u(te)) = uo, (2 2

where F:RX R"-R" is a set-valued map, w hich satisfies that

(a) foreach x R", t-F(t,x) ismeasurable,

(b) foramostt R", x »F (t,x) isupper samicontinuous
and g:Rx R'>R" satisfies the Caratheodory conditions

A function x (*) iscalled a olution of differential inclusion (2 1) or differential equation (2
2) if x (*) isabslutely continuous and satisfies (2 1) or (2 2) for aimost all t repectively.
Theorem 1L etV:R* X R"-R + o bea nonnegative contingently epi-diff erentable lav er sam icon-
tinuous ex tended f unction and F:R* X R" »R" be a nontrivial upper samicontinuous set-valued map
w ith canpact convex images W e suppose that

(i) forevery (t,x) dan /), infv reoD:V (t,x) (1, v) =g (t,V (t,x)),
whereg C(R’xR'-R);
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(ii) for any given [0, T]CR", Imk|-+«V (t,x)= + o unifomly fort [0,T]

If the diff erential equation (2 2) has amaximal solution r(t, to, uo) def ined on [to, ® ), then
for any xosuch thatV (to, Xxo) < uo, there exists a solution x (t) o the diff erential inclusion (2 1)
def ined on [to, @) such thatV (t,x () <r(t), t=te
Proof We set G (t,x,u)= F (t,x) % g (t,u), K ()= eV (t). SinceF (t,x) is compact andDV (t,
x) (v) is lower samicontinuous, (i) mplies that there isv F (t, x) such that (see Prop. 6 14 of
[2])

(L,v,g(t,V (,x)) Tewm (t,x,V(t,x)) = @OV (t,x)).

Thus za: = (t+ hata, Xn+ hava,V (t,x)+ hes)) @ ) with ha 50+, th>t, va—>v and s —g (t,
V (t,x)). If u>V (t,x), thismplies that for large n
(t+ hatn,Xn+ hava,u+ hag(t,u))
= zo+ (0,0,uV (t,x)-hn(sg (t,u)) @ W)+ {0} x {0} x R"= @ (V), o that
(Lv,g(t,u)) Tew(t,x,u)),
ie, (L,(t,x,u)n Temn(K) (t,x,u)# @
By Theoran 3 250of [1], for initial state (to, xo, uo) Graph(K), there exists a positive T
and a variable solution (x, u) on [t, T ] to differential inclusion
(x(®,u(®)  Gtx(1),u()
such that
x@,u(®) KM, t [toT] ie,V({tx(®)=u(,t [tT]
and
eitherT = + e orT < e and lim sp ([[x @ ||+ [Ju@® | =+ .

Since themaximal solution r(t, to, uo) for differential equation (2 2) isdefined on [to, ® ] and
DV (t,x) =u(t) =r(t, to,u0). Thisand (ii) mply T= + . Othemwise, the boundednessof r(t)
on [to, T) and (i) imply that ||x (t) || isbounded on [to, T). This isa contradiction O
Remark A smilar result was discussed in [1] where F was assumed to be linear grow th and w as
indepent of t

A s a oonsequence, w e have
Corollary 1L et F beasin Theoren 1and g:R" X R” -R" be a continuous f unctions A ssume that

Gii) d(O,F (tx) =g (t k), =t

If the diff erential equation (2 2) has amaximal solution r(t, to, uo) def ined on [to,© ), then
for any xo, |xo|=<uo, thereexistsa solution x (t) o thediff erential inclusion (2 1) def ined on [to,
) such that [x (1) [<r (D), t=to
Proof LetV (t,x)= ||x|| Wehave
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ViFn(}‘X)DTV(t,x)(l,v)= inff_ sup x ,v < inf |v||§g(t,||x||).

v F(t,x)x* alxl v F(tx)

Since (see [4])

{x'/Ix[p ifx # 0,
o« []= { S o

X R |x | <1 ifx=AQ
This completes the proof of the Corollary by using Theorem 1 O

Theoran 2L etV:R" X R">R + ® bea nonnegative contingently epi-diff erentiable episleek lov er
sam icontinuous extended function Let F:R™ x R">R" be linear grow th set-valued map w ith can-
pact convex images and g: R* X R" be linear grov th nonnegative f unction W e suppose that F is
measurable in t, upper samicontinuous in x and g satid ies Caratheodory conditions A ssume also
that (i) and (ii) hold. If the diff erential equation (2 2) has a maximal solution r (t, to, uo) de-
fined on [to, ), then for any xo, V (to, x0) < uo, there exists a solution x (t) o thediff erential in-
clusion (2 1) de ined on [to, @) such thatV (t,x (1)) <r(t), t=to
Proof W e can proves the Theoren by using Theoren 1of [5] and the smilar method in proof of
Theorean 1
Remark Theoran 2 ranains true for non-episleek V (t, x), if we replace epiderivativeD : V (t, x)
(1,v) in (i) by Circatangent epiderivativeD 1V (t,x) (1,v) (see [2] and [4]).
Theoren 3L et F,g beasin Theoren 1and letV:R" X R"->R + ® bea nonnegative contingently
hypod if f erentable continuous f unction A ssume that F is linear grow th and that (ii) and

(iv) for every (t,x) dom ), supv roD +V (t,x) (1,v) =g (t,V (t,x)).
If the diff erential equation (2 2) has a maximal solution r(t, to, uo) def ined on [to, © ), then for
any xo,V (to, xo) < uo, all solutions x (t) o the diff erential inclusion (2 1) de ined on [to, © ) such
thatV (t,x (1)) =r(1), t=t
Proof By Theoran 1 the differential inclusion (2 1) hasa lution defined on [to, © ) such thatV
(tLx(®)=r(), t=t

L et x (*) be an arbitrary solution to the differential inclusion (2 1). W e assert that itsmaxi-
mal existence interval is [to, ) andV (t,x (1)) <r(t), t=to Indeed, if itsmaximal existence in-
terval is [to, T), T< + o, forany t [to, T), the upper samicontinuty of F implies

x(t+ h) - x(1) hF(tx)+ eB
for snall h, whereB denotes the unit ball of R". Thisand (iv) yield
D.V (tx (1) = limsup[V (t+ h,x(t+ h))~v (t,x (1)) 1/h
< , Fs(lﬂe(t))D V(G x (1) (4,v) < g(t,V (t,x)).

— 46 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



ThusTheorem 1 2 60f [7] (seeal® [11]) mpliesV (t,x () <r(t), t [to, T). Since r(t)

is bounded on [to, T) and lim [||[-=V (t,x)= + o uniformaly on [to, T), thenV (t,x (1)) <r(t), t

[to, T) implies that ||x (t) || isbounded on [to, T) and s there existsM > 0 such that | [x (1) |

|<M fort [t,T). Hence ||[F (t.x (8 ||- supv rexr ||v||= M + DC (1), and then for any to
=tu=t=T we have

[} () - x(w)|]= & + 1j’fc(t)dt

and by the abslutely continuousof integral, x (t) hasa lmitwhen t-T., we denote this limit
by za

By Theoran 3 2 50f [1] thereexistsT1> T and a ©lution x1(t) starting at zo to differential
inclusion x (t) F(t,x(t)) on [T, Ta).

D efine
Clx(v),  ift o [to,T),
2(1) = {Xl(t), it [T, Ta).

Then z(t) isa lution of the differential inclusion (2 1) defined on [to, T1). Thisisa contradic-
tion O

3 Stability of differential inclusion

In this section w e assum e that
(v) 0 F(t,0), g(t,0)0=0andVv (t,00=0, t R
hold Consider differential inclusion
x (1)  F(tx), (3 1)

+

and differential equation “
u(t) = g(t,u). (3 2

The trivial oolution x= 0of (3 1) is stable (weakly stable), if for each & 0, to
R, there exists &= &(to, ©> 0 such that for each xo, | |xo||< &, all (there exists

a) slution x (t, to, xo) of (3 1) satisfying | |x (t, to, x0) ||< € t=to

If isindependent of t,, we say that the solution x= 0of (3 1) isunifomly sta-
ble (uniformly weakly stable). Other stability notions (equistable, asymptotic sta-
ble, equiasymptotic stable) can be similarly defined (see [7], [11]).

The trivial solution u= Oof (3 2) isstable, if foreach & 0, tt R", thereexists
& S(to, &> 0 such that for each uo | |uo | |[< &, there existsamaximal solution r (t, to,
uo) of (3 2) satisfying |r(t, to,u0) |[< € t=to

O ther stability of u= 0 to the differential equation (3 2) can be similarly defined
(see [7] and [11]).
Theoran 4L et F and g be as in Theoran 1 (or Theoren 2) and letV:R* X R"->R" be a contin-
gently epidiff erentable continuous f unction. A ssume that (i), (ii) hold and

(vi) there exists a continuous strict increasing f unction $on R satisfying #0)= 0 and K | |x |
D=v (tx), (tx) R"xR"
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T hen the f ollowv ing conclusion holds

1° If the trivial solution u= O d (3 2) is stable (or asymptotic stable), then the trivial solu-
tion x= 0d (3 1) isweakly stable (or asymptoticw eakly stable).

Furthemore, assume that

(vii) there exists a continuous strict increasing f unction ¥ on R™ satifying ¥(0)= 0 and V (4,
)=W(|x|]P, (tx) R"xR"

2° If the trivial solution u= O d (3 2) isuniformly stable (or unif o ly asymp totic stable) ,
then the trivial solution x= 0 d (3 1) isunif oomly w eakly stable (or unif om ly asymp totic w eakly
stable) regpectively.
Proof For any given (to,x0) R’ X R", by Theoram 1 (or Theoran 3), there exists a lution x
(1, to, x0) of the differential inclusiton (3 1) and a olution u(t, to,V (to, x0)) of the differential e-
quation (3 2) such that

V (t, x (t, to, X0)) < u(t, to,V (to,x0)) = r(t, to,V (to, X0)), (33

and (vi) mplies

(| |x (t, to, x0) |]) =V (t,x (1, to, x0)). (3 4

If the trivial ©lution u= 0 is stable, then forany € 0, to R", thereexistsd = & (to, 6>

0 such that for each uo, 0= uo< & , we have
0=<r(ttou) < KO, t= 1 (3 5)

From the continuity of v, there exists 5(to, € > 0 such that for each | [xo||< (to, & we have
0=V (to, x0)< & (to, € and o 0=r(t, to,V (to, x0))< Ke). Thisand (3 3), (3 4) mply that for
| [xo||< 8(to, & we have ||x (t, to, x0) ||< € Therefore the solution x= 0 of differential inclusion
(3 1) isweakly stable

It iseasy to show that the other conclusions hold by the standard argument

If we replace the assumptionson F and g of Theoran 4 by assuming that F and g satisfy the
conditionsof Theorem 3, w e can prove the corregponding resultsfor strongly stability properties
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