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Abstract In thispaperw e definemeasuresof sami-noncompactness in a locally convex
topological linear pacew ith regect to agiven saminom. Thenw e get a fixed point the-
orem for a class of condensing set-valued mappings and apply it to differential inclu-
sions

Keywords ordered topological linear pace, almost order-bounded set differential inclu-
sion
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Recently, many papers are concerned w ith existences of fixed points for set-valued contrac-
tion mappings, see, e g , [9] and reference therein In thispaper, motivatied by the ideas of
[7] we introduce a notion of measure of sami-noncompactnessfor subsetsof a topological vector
latticew hich not only reduces to that given in [7] for the nom topology on aBanach lattice, but
w hich applies equally to thew eak topology in aw ide class of Banach lattices These ideas lead
naturally to considering a class of set-valued mappingsw hich we call set-valued AM -mappings
and forw hich we prove a fixed point theoran (T heoran 3).

Let (E, T be areal and locally convex topological linear gpace W e assume that there is an
order relation = in E, which makes E a vector lattiec Forx E. Let

x"=x 0, x = (- x) 0, |x|= x"+ x, E+= {x E|xZO}.
W e assume that the topology Tand the partial order< satisfy the follow ing condition (H):

(H)Letx E. If {xn} CE isa sequencew hich is T-convergent to x, then there exists a sub-
sequence {xn} C {xn} and there exist elanentsy,z E with 0=x, < y, 0=xn = z such that the
subsequence {xn } (repectively {x»}) is Tconvergent to y (respectively z).

It is clear that condition (H) implies that the positive cone E+ is Tclosed in E. W e remark
that if E isaBanach lattice and if Tisthe nom topology on E, then condition (H) isclearly satis-
fied since the lattice operations are continuousfor the nom topology. If Tisthew eak topology on
aBanach lattice then the situation is omew hat different, since that lattice operationsare, in gen-
eral, notweakly continuous How ever, condition (H) w ill be satisfied for thew eak topology of a
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Banach lattice E if the olid hull of any weakly compact subset of E is again relatively w eakly
compact, in particular, if E is reflexiveor if E isan abstract L -pace

L et Pbe a saninom in E, which is low er samicontinuousw ith repect to T, that is, if B o=
{x E |¢(x) < 1}, themBwis T-closed In addition, w e suppose that Pisnonotonew ith repect to
the given partial order, that is, 0= x= y mplies¥x) =Hy). IfD CE, and if there exists r> 0
such thatb C B¢ then D is called ¥bounded, D is called aimost order-bounded relative to & if
for given & 0O, there existsu E+ such thatD C [- u,u]+ B¢ This isequivalent to the state-
ment; for given € 0. there existsu E-+ such that

A(|x]- w) =eVx D.

W e remark that if E isan abstractL -ace and if Pis the given nom on E then a subsetD CE is
almost order-bounded relative to Pif and only if D is relatively w eakly compact
For any %bounded subsetD in E, define

PoAD) = inf{§> 0|{u E. such thatD C [- u,u]+ 6Bd

It is easily seen that [5]
PoD) = inf{§> 0|{u E. suchthat H(|x |- w)*') = & Vx D}

W e say that P#(D ) is themeasure of sami-noncompactnessof D w ith regpect to P W ew ill om it P
if there is no danger of confusion Our definition ismotivated by the measure of sami-noncom-
pactness introduced by de Pagter and Schep!” and reduces to theirsfor the case that E isaBanach
latticew ith Pthe given nom on E and Tthe nom topology.

W e now gather some simple properties
Lenmal If D,D1,D2are Pbounded sets in E, then

()P(D)= 0 =D isalmost order-bounded (relative to @;

(i) PO 1+ D2)<PD )+ PD2),P(AD)= [A|P(D), A real;

(ii)D1CD2=2PD1) =PD2);

(iV)PO  {xo})=PD) xo E;

(W PD)- PD), whereD denotes the closure o D w ith regect to T,

(vi)P(co@))= PD), where coD) is Tconvex closure o D.
Proof (i), (iii) and (iv) are clear.

(iDLet xx Dk k= 1,2 Given & 0, there exists a«= 0 such that

D«CD [- Uk,Uk] + (P(Dk) + _g_)BQD,k: 1,2
If xk= yxt zx, With yk [- uk, uk] and z« (PO« + _g')BQ?, k=1, 2, then

X1+ X2 [- (Ul Uz),U1 Uz] + (p(D 1) + p(D 2) + S)Ba
It follow s that
PD:1+ D2) <PD1) + PD2) + g

for every > 0 and (ii) follow s _
(v) From (iii), it follow sthat PO ) =<P([D). To prove the reverse inequality if &> 0 isgiven,
then there existsu E+ such that
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A(|x|- W) <pPO)+ g Vx D.

If x D, there existsa sequence {xn} CD, with xa-»x in T By (H), there exists a subse-
quence {xn} C {xn} satisfying: xn — y, xn —z,andx" <y, x’ = z S0
wherev=y+ z By (H) again, there eixsts a subsequence {xn} of {xn} such that

- ou'.

Xn [- u-v- uinT,

(|x|— u < (v- u)'= I'rjn(xnj,

From low er samicontinuity of Prelative to Tand the fact thatPismonotone, w e have
A( |x |- W) =H- uw’) =< (F(I'rjn ( |an, | - uw') < Im inIQX |an, | - wh)
<PD)+ & V¥x D,

and the conclusion follow s

(vi) By (iii) and (v), it isonly necessary to prove P(co@)) =P(D). Forany o> P(D), there
existsu E-+ such that

D C[- uu]+ Be
Because [- u,u]+ oBeisa convex set, it follow s that
oD) C [- uul+ Be

S P(co@))=a Letx|PD) andwe get the conclusion

W e now give the follow ing:

Definition 2 Let (E, r) bea locally convex real linear topological space, w hich is in addition
a vector lattice such that condition (H ) is satisf ied, and let Pbe a monotone seninom in E. W e say
that a set-valued mapping F is upper sami-continuous at xo E, if for any neighbourhood N (F
(x0)) o F (xo), there exists a neighbourhoodN (xo) o xosuch that

Vx N (xo), F(x) CN (F(xo)).

F iscalled upper sami-continuous if F isupper sami-continuous at every pointx E. L etD bea sub-
set o E and F:D —E bea T-upper-continuous set-valued mapping, w hichmaps ¥Pbounded sets to P
bounded set If F maps each Palmost order bounded subset d D to a T-relatively canpact set, then
F iscalled a set-valued AM mapping onD. If for any ®bounded set SCD, the condition P(S)> 0
implies P(F (S))< P(S), then F iscalled a condensing set-valued AM -mapp ing.
Lenma 3" LetS bea canpact H ausdorff space and F: S S a closed set-valued mapping (that
is, itsgraph isa closed subset & SX S), then F is upper-sam icontinuous
Theorem 4 SupposeD isa non-empty, Pbounded and Tclosed convex subset in E, if F:D —-D isa
condensingset-valued AM mapping, then F hasa fixed point inD.
Proof Letxo D. LetZ bethecollection o all T=closed convex subsets & D containing xo and be-
ing invariant under F. BecauseD Z, Z isnon-empty. If So= Ns zS then xo SoCD, SoisT
closed and convex, F (So) C So, and cofF (So), xo} C So and consequently

F ({F (So),xo0}) C F (So) C 0ofF (So), xo}. (1)
By (1), C_O{F(So),Xo} Z, and from the definition of So, we have
E{F (So),Xo} = Sa (2
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It follow sfrom L enma 1 that
P(So) = P(00{F (So),x0}) = P({F (So),x0}) = P(F (So)).

A sF iscondensing, P(So)= 0, 20 that Soisan amost order-bounded set, and consequently
F (So) is Trelatively compact since F is a set-valued AM mapping From (2), So itself is ™com-
pact By the Kakutani-Fan fixed-point theorem [4], F hasat least one fixed point in SoCD and
the proof is complete

W e now give an exanple for application of Theoren 4

L et CC (X ) denote the classof closed convex subsetsof Banach gpace X. Consider the differ-
ential inclusion in Y=L *(0, 1):

x(t)  f(,x(@®)),t (01). (3

x(0) = xa (4)
Suppose
(al) f (t,z) cC(R) foreveryt (0,1) andz R;
(a2) t—f (t,z) isameasurable set-valued function for z R;
(a3) There exist a nonegative function a(t) Y and a constant b= 0 such that

(@ ]=a(®+ blx(@) | foreveryy Mu(f.),

whereM . (f «) is the set of all measurable selectionsof f (t,x (t)),t (0,1),x L (0, 1);
(a4) For any closed convex subset S of Y. {(x,f (- ,x)) |x S cc(yxY).

Lenma 5 Suppose (al), (a2) hold, then
H@=h YhD) Fe)= f(t,xO+J-;g(s)ds),a et (0,1) cc(y)

forevery g Y.
Proof The convexity of H (g) iseasy to prove

Nextwe show thatH (g) isclosed W hatwe do here is ssmeav hat more thanwe need In
fact, weproveH (g) isweakly sequencially closed

Letha H(g),n=1,2 ,ha-howeaklyinY. Sincehn H (x),h.(t) Fs(t), a e, coonse
quently, by the definition of integral for set-valued functionsand Fq(t) CC(R), t (0,1), we

have
rrT(lJ—J'JFg(t)dt

isaconvex set, and m_gﬁjahn(t)dt m_g;jaFg(t)dtfor all n, wherem (- ) isL ebesquemeasure

andJ C (0,1) isany measurable subsetwithm (J)> Q
By M azur theoram,

|'rnm(J () dt= mﬂJ Jho(t)dt m—l—(J)c|IJFg(t)dt)

hold for every measurable J C (0, 1), where by cl(- ) wemean the closure in nom topology.
Therefore ho(t) cof (t,x (t1))= Fe(t), a e, Itfollowsthatho H (g). SoH (g) cc(Y),g
Y.
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Theoran 6 bxSuppose (al)-(a4) hold and 0< b< 1, then problen (3)-(4) hasa slution
Proof Foreveryg Y, H (g) ccC(Y). Let
B:= {y Y|II yll < r},
wherer= 1l all (1- b)". ThenH:B:-B:. LetusprovethatH :B:-B iscondensing Suppose
QCBand P(Q)> Q For any e 0, there exists a nonnegativeu Y such that
QC [~ uul+ [PQ) + £B.
So for every x  Q, it has a decomposition:
x=y+ z,y [- uu]l,z [PQ)+ €B:
o
H(x) C[- a- bu- blxo|,a+ bu+ blxo|]+ b[PQ) + €]B1,

t
W here ua(t) :I ou(s)ds It follow s that
PH @Q)) = b(PRQ) + o).
L etting e~ 0w e get the conclusion that H is condensing By the proof of Theoran 4w e can get
So CC(Y) such thatH : So—Soand So isan aimost order-bounded set  Since the relatively w eakly
compact subset of L *(0, 1) areprecisely thosew hich are aimost order-bounded for nom topology
([5]), Soisweakly compact By theassumption (a4) the graph of H |So isweakly closed in Y%

Y, thereforeH : So —So is upper-san icontinuous in thew eak topology inL *(0, 1), hereH |So is the
t

restriction of H to So By Theoran 4, H hasafixed pointy inSe Obviously, y (1) f (t,X0+I oy
(s)ds),t (0,1), a e Define

X (1) = XO+I;y(s)ds, ¢ (0.1),

then x (0)= xo,x () =y (t) f(t,x (1)), ae, t (0,1). Theproof iscomplete
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