${}^{2}F_{4}(q)$ is also 7-group by lemma 1, therefore, ${}^{2}F_{4}(q)$ can not be inner 7-closed group, and (28) holds

(2 9) G is not of type
$${}^{2}G_{2}(q)$$
, $q = 3^{2m+1}$, $m \ge 1$, ${}^{2}D_{n}(q)$, $n > 3$
Let $X = {}^{2}G_{2}(q)$, S Sy $I_{2}(X)$, by [12, p. 292], one has $C_{X}(S) = S$, $W_{X}(S) = 168$,

it follows that $N_X(S)$ is not 7-closed group and ${}^2G_2(q)$ can not be inner 7-closed group. For ${}^2D_n(q)$, with the same argument before, we need to consider only ${}^2D_4(q)$. It is known that $A_2(q)$ and $A_1(q) * {}^2D_3(q)$ are Levi subgroups of ${}^2D_4(q)$. For a same q, both $A_2(q)$ and ${}^2D_3(q)$ are not 7-group at the same time by lemma 1, hence ${}^2D_4(q)$ can not be 7-closed group, and (2.9) holds

The proof of the Theorem is complete by the classification theorem of finite groups

References

- [1] Chen Zhongmu, On the inner p-closed groups, Advances in Math, 15(1986), 385-388
- [2] Li Shirong and Li Shiyu, Finite groups in which every nonmax in alproper subgroup is 3-closed, Acta Math Sinica, 29(1986), 498-503.
- [3] You Taijie, On the structure of inner 5-closed simple groups,
- [4] Xiao W en jun, On p-closed groups, A cta M ath Sinica, 36(1993), 160-162
- [5] M. Bloom, The subgroups of PSL (3, q) for odd q, Trans Amer Math. Soc., 127 (1967), 150-178
- [6] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin Heidelberg, New York, 1979.
- [7] J. H. Conway, R. T. Curtis, S. P. Norten, R. A. Parken and R. A. Wilson, *A tals of Finite Group s*, Clarendon Press, Oxford, 1985.
- [8] R. W. Carter, S imp le Groups of L ie Type, Wiley, Londom, 1972
- [9] B. Kleidman, The max in al subgroups of the Chevalley groups $G_2(q)$ with q odd the Ree groups $G_2(q)$, and their automorphism groups, Jour of Alg, 117(1988), 30-71.
- [10] D. Gorenstien, Finite Groups, Harper & Row, New York, 1968
- [11] L. E. Dickson, Linear groups, with an exposition of the Galois field theory, Teubner, Leipzig, 1901.
- [12] B. Huppert, Finite Groups 111, Springer-Verlag, Berlin Heidelberg, New York, 1982

关于内 7-闭单群的结构

李先崇游太杰 (贵州师范大学数学系, 贵阳 550001)

摘要

研究内p-闭群的结构是一个很活跃的课题 对于p=2,3,5 的内p-闭群的结构已经被确定(见 [1,2,3]). 本文确定内 7-闭单群的结构

On the Structure of Inner 7-Closed Simple Groups

LiXianchong You Taijie
(Dept of Math, Guizhou Nomal University, Guiyang 550001)

Abstract The structure of inner p-closed groups for p = 2, 3, 5 are known (see [1, 2, 3]). In this paper, we shall demine the structure of the inner 7-closed simple groups

Keywords p-closed group, simple group.

Classification AM S (1991) 20F99/CCL O 152 1

1. In troduction

Throughout this paper, G denotes a finite group and p is a prime G is said to be p-closed if the p-subgroup of G is normal in G. G is called an inner p-closed group if every proper subgroup of G is Sp-closed and G itself is not p-closed. For the structure of inner p-closed groups, Chen Zhongm $u^{[1]}$ show ed that an inner p-closed group G must be one of the two types: (1) $G/\Phi(G)$ is non-abelian simple group, where $\Phi(G)$ denotes the Frattini subgroup of G; (2) G is a q-basic group of order $p^{\alpha}q^{\beta}$ for some prime q [1] also determined that the inner 2-closed groups are dihedral. For the inner p-closed simple groups G, Li Shirong has shown that G is isomorphic to PSL $(2, 2^r)$, r is odd prime, for p = 3; You Taijie has proved that G is isomorphic to either PSL $(2, 2^r)$, r is odd prime, for p = 5; Recently, Xiao Wenjun obtained an important result that inner p-closed simple group has cyclic Sp-subgroup for odd p, and he pointed out that it is difficult to determine the structure of inner p-closed simple groups for $p \ge 5$. The aim of this paper is to prove the following

Theorem An inner 7-closed simple group is isomorphic to one of the following groups: $A_1(7), A_1(p)$,

 $p - 1 \pmod{7}, A_1(p^3) p - 3 \text{ or } 5 \pmod{7}.$

2 The Proof of the Theorem

Lemma 1 Let G be a non-abelian simple 7-g roup, then G is isomorphic to one of the following g roups:

(1) The sporadic groups M_{11} , M_{12} , J_{3} , and the alternating groups A_{5} , A_{6}

^{*} Received Sep. 8, 1993 Project supported by the Scince Fundation of Sci and Tech. Com. of Guizhou Province

- (2) $A_1(q), B_2(q), q = p^f, (3, f) = 1, q \neq 0, 1 \text{ and } -1 \text{ (m od 7)};$
- (3) $A_n(q)$, $n=2,3,4,q=3,5 \pmod{7}$, $q=p^f$, (6,f)=1;
- (4) ${}^{2}A_{n}(q)$, $n=2,3,4,q=p^{f},q=2,4 \pmod{7}$, (6,f)=1;
- (5) ${}^2F_4(2^{2m+1})$, ${}^2B_2(2^{2m+1})$, $m \not\equiv 1 \pmod{3}$, where ${}^2F_4(2)$ instead of ${}^2F_4(2)$. **Proof** We will use the classification theorem of finite simple groups By directly checking the order of the simple groups, it is seen that there are only five groups M_{11} , M_{12} , J_3 , A_5 , A_6 being 7-group in the lists of alternating and sporadic simple groups. In the lists of L ie groups G(q), if $(q^6-1)|G(q)|$, then G(q) can not be 7-group since $M^6-1 \pmod{7}$ for any positive integer number M. Therefore, we need only to consider the L ie groups: $A_n(q)$, n=1,2,3,4, $B_2(q)$, $A_n(q)$, n=2,3,4, $A_2(q)$, $A_3(q)$, $A_$

If $A_1(q)$ is a 7-group, i.e., $(7, |A_1(q)|) = (7, q^2(q^2 - 1)d^{-1}) = 1$, here d = (2, q - 1), which is equivalent to $q \not\equiv 0$, 1 and - 1 (mod 7). If $B_2(q)$ is a 7-group, then $(7, |B_2(q)|) = (7, q^4(q^4 - 1)(q^2 - 1)) = 1$, this is equivalent to $q \not\equiv 0$, 1 and - 1 (mod 7) for q^4 1 mod 7) if and only if q^2 1 (mod 7). These are the list of (2). By the same argument, we get the lists of (3), (4) and (5). But for ${}^2G_2(3^{2m+1})$ since $|{}^2G_2(q)| = q^3(q^3 - 1)(q - 1)$, $q = 3^{2m+1}$ and $q^3 + 1 = 3^{3(2m+1)} + 1$ 0 (mod 7) for all nonnegative integer number m, ${}^2G_2(q)$ can not be a 7-group. The proof is completed

Lemma 2 Let F(q) be a field of q elements, then $(-7)^{1/2}$ is an element of F(q) if and only if q^3 1 (mod 7).

Proof See the proof of lemma 6 5 of [5, p. 173].

The following lemma is clear

Lemma 3 If H is a proper non-abelian simple section of an inner 7-closed simple group G, then H must be 7-group.

Proof of the Theorem Firstly, one can easily check that the listed groups in the theorem are really inner 7-closed groups by Diekson theorem [6, p. 213]. Conversely, let G be an inner 7-closed simple group, we shall show that G must be isomorphic to one of the listed groups of the theorem with the help of the classification theorem of finite simple groups

- (2 1) G is not isomorphic to any one of the list of alternating groups and sporadic groups Looking up the ATLS table [7] (especially for the items which the maximal subgroups were listed in), it can be seen that such a simple group is either 7-group or having a proper section A_1 (7) or A_7 , and A_7 has also a proper section A_1 (7). Hence all of the alternating groups A_n ($n \ge 5$) and spradic groups are not inner 7-closed group by lemma 3
 - (2 2) G is not of type: $E_6(q)$, $E_7(q)$, $E_8(q)$, ${}^3D_4(q)$, ${}^2E_6(q)$.

Since the listed groups of (2 2) have Levi subgroup (see [8]) $A_5(q)$, $A_6(q)$, $A_7(q)$, $B_3(q)$, $A_1(q^3)$ and $^2D_4(q)$, respectively. These subgroups are not 7-group by lemma 1 and are simple groups. It follows that the listed groups of (2 2) can not be inner 7-closed group by lemma 3, and (2 2) holds

(2 3) If G is of type $A_n(q)$, $q = p^f$, then G must be one of the listed groups of the theorem. Suppose $G \cong A_n(q)$ for some q and n. It is known that $A_n(q)$ has a proper subgroup $A_{n-1}(q)$, and $A_{n-1}(q)$ is simple when $n \ge 3$ or $q \ge 4$. By lemma 1 and lemma 3, it follows that $n-1 \le 4$. Thus we need to consider the family $A_n(q)$, n=1,2,3,4,5.

(2 3 1) Suppose that $G \cong A_1(q)$, Since $7 \mid A_1(q) \mid = q^2(q^2 - 1)d^{-1}$, d = (2, q - 1), q = 0, 1 or $-1 \pmod{7}$. If $q = 0 \pmod{7}$, $q = 7^f$, then f = 1 for $A_1(7)$ is a subgroup of $A_1(7^f)$. While $A_1(7)$ belongs to the listed groups of the theorem. Since the Broel subgroup B = 0 of $A_1(q)$ is a Frobenius group with kernel K of order q and complement H of order $(q - 1)d^{-1}$. If B is 7-closed, then $q \not\equiv 1 \pmod{7}$. Therefore, if $A_1(q)$ is inner 7-closed group, then $q \not\equiv 1 \pmod{7}$. Thus one can assume that $q = p^f - 1 \pmod{7}$. If $p = 1 \pmod{7}$, then $p \ge 13$, $7 \mid A_1(p) \mid = p(p^2 - 1)2^{-1}$, $A_1(p)$ is simple and is a subgroup of $A_1(q)$, this forces that f = 1. $A_1(p)$, $p = 1 \pmod{7}$, is an inner 7-closed group and is contained in the listed groups of the theorem. If $p + 1 \not\equiv 0 \pmod{7}$ and $q = p^f - 1 \pmod{7}$, this case occurs if and only if p = 3 or $5 \pmod{7}$ and $q = p^f - 1 \pmod{7}$. It follows that $q = p^f - 1 \pmod{7}$. This forces that $q = p^f - 1 \pmod{7}$ and $q = p^f - 1 \pmod{7}$. This forces that q = 1 and q = 1 an

(2 3 2) G is not of the type $A_n(q)$, n=2,3,4,5, except $A_2(2)$. $A_2(q) = q^3(q^3-1)(q^2-1)d^{-1}$, d=(3,q-1). If $q^3=1 \pmod q$ and q>2, then $A_2(q)$, q odd, has a proper subgroup $A_1(7)$ from [5] for odd q and from $A_2(2) \cong A_1(7)$ for $q=2^f$, hence $A_2(q)$ can not be an inner 7-closed group except $A_2(2)$ in case $q^3=1 \pmod 7$. Since $A_1(q)$ is a subgroup of $A_2(q)$ and is a simple group if q>3, but is not 7-group if q=0 or $p=1 \pmod 7$ by lemma 1. It follows that $A_2(q)$ can not be inner 7-closed group if q=0 or $p=1 \pmod 7$ and q>3. While $A_2(3)$ is 7-group. Hence (2 3 2) holds for q=2

It is known that $A_2(q)$ is a proper subgroup of $A_3(q)$ and $A_4(q)$, $A_3(q)$ and $A_4(q)$ are 7-group if $A_2(q)$ is 7-group by lemma 1 and, therefore, are not inner 7-closed group by lemma 3. Since SL $(3, q^2)$ is a subgroup of SL (6, q), $A_2(q^2)$ is a proper section of $A_5(q)$ and not 7-group by lemma 1, hence $A_5(q)$ is not inner 7-closed group. Therefore, (2, 3, 2) holds, and (2, 3) holds (2, 4) G is not of the type $B_n(q)$, $n \ge 2$

A ssume that $G \cong B_n(q)$ for some n and $q = p^f$. By lemma 1 and 3, n = 2 or 3 for $B_{n-1}(q)$ is a subgroup of $B_n(q)$. $B_2(q)$ has a Levi subgroup $L = A_1(q)B_1(q)$, $A_1(q)(q > 3)$ is simple group. $B_2(q)(q > 3)$ is 7-group if $A_1(q)$ is 7-group by lemma 1, hence $B_2(q)$ can not be inner 7-closed group as it has the proper section $A_1(q)(q > 3)$. $B_2(2)$ and $B_2(3)$ are 7-group s Now, one has $G \cong B_3(q)$ for some q. Since $G_2(q)$ is a subgroup of $B_3(q)$ (see $[9, \S 1, 4]$, where $B_3(q) \cong P \Omega_7(q)$) and is not 7-group by lemma 1, hence $B_3(q)$ can not be inner 7-closed group. A contradiction, and (2, 4) holds

(2 5) G is not of type $C_n(q)$, $n \ge 3$

Since the subgroup $C_{n-1}(q)$ (n > 3) of $C_n(q)$ is not 7-group, $C_n(q)$ (n > 3) is not inner 7-closed group by lemm a 3 $Sp(2, q^3)$ is subgroup of Sp(6, q) by [6, p. 228], it follows that $C_1(q^3)$ is a subgroup of $C_3(q)$, $C_1(q^3) = A_1(q^3)$ is not 7-group by lemm a 1, hence $C_3(q)$ is not inner 7-closed group, and (2 5) holds

(2 6) G is not of type $D_n(q)$, n > 3, $G_2(q)$, $q = p^f$.

Similarly, we need only to consider the case n=4 It is known that $D_4(q)$ has a graph automorphism u of period, the fixed subgroup of u is the L ie group $G_2(q)$. It follows that $D_4(q)$ can not be inner 7-closed group for its subgroup $G_2(q)$ is not 7-group by lemma 1. Since $A_1(q)$ is a

proper section of $G_2(p)$ (see [9, Theorem A] for odd prime p), hence $G_2(p)$ is not inner 7-closed group. Obviously, $G_2(p)$ is a subgroup of $G_2(q)$, $q = p^f$, and $G_2(q)$ can not be inner 7-closed group for its subgroup $G_2(p)$ is not 7-group, and (2-6) holds

(2 7) G is not of type ${}^{2}A_{n}(q)$, n > 1.

Similary, by Lemma 1 and 3, we need to consider the case n < 6 Since ${}^2A_2(q)$ is a subgroup of ${}^2A_3(q)$ and ${}^2A_4(q)$, if ${}^2A_2(q)$ is 7-group, then ${}^2A_3(q)$ and ${}^2A_4(q)$ is also 7-group, hence ${}^2A_n(q)$ (n = 3, 4) can not be inner 7-closed group. Since the Levi subgroup $A_2(q^2)$ of ${}^2A_5(q)$ is not 7-group, ${}^2A_5(q)$ can not be inner 7-closed group. If n = 2, one can assume that $7 \mid {}^2A_2(q) \mid = q^3(q^3+1)(q^2-1)d^{-1}$, d = (3,q+1), i.e., q = 0 or $q^2 = 1$ or $q^3 = 1$ (mod7). If q = 0 (mod7), i.e., $q = 7^f$. Since ${}^2A_2(7) = U_3(7)$ has a maximal subgroup $A_1(7)$. 2 (see [7,p.66]), ${}^2A_2(7)$ is a subgroup of ${}^2A_2(q)$, thus ${}^2A_2(q)$ can not be inner 7-closed group. If $q^2 = 1$ (mod7), the Borel subgroup B of ${}^2A_2(q)$ is the semidirect product of P of order q^3 and P of order $(q^2-1)/d$, $(P_1(P)) = 1$ implies that P can not be 7-closed group, hence P and P can not be inner 7-closed group. Now, assume that Q and Q is a subgroup in matrix form with entries in a finite field P and P be the three dementional special linear group in matrix form with entries in a finite field P and P by classical notations, the special unitary group

$$SU(3,q) = \{x \quad SL(3,q^2) | X^{-1} = (X^u)^t \}$$

(see [10, p. 466]), where "t" denotes transpose and X" is the matrix abtained from X by applying the field automorphism $a'' = a^q$ of $F(q^2)$ to each entries. Thus ${}^2\!A_2(q) = PSU(3, q)$ is the factor group of SU(3, q) modulo its center and $|SU(3, q): {}^2\!A_2(q)| < 4$. This implies that $A_1(7)$ is a section of ${}^2\!A_2(q)$ in case $A_1(7)$ is a subgroup of SU(3, q), so it suffices to show that $A_1(7)$ is a subgroup of SU(3, q). Let

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, Y = \begin{bmatrix} r & 2^{-1} & 2^{-1} \\ r & -2^{-1} & 2^{-1} \\ 0 & r+2^{-1} & r+2^{-1} \end{bmatrix},$$

where r $F(q^2)$ and $2r^2 + r + 1 = 0$. Note that such an element r do exist in $F(q^2)$ with odd q, i.e., the equation has at least one solution in the field. That occurs if and only if the element $(-7)^{1/2}$ $F(q^2)$, and if and only if q^6 $1 \pmod{7}$ by Lemma 2. Clearly, this is always holds. A fter calculation, it is seen that $X^2 = Y^7 = (XY)^3 = (XY^3)^4 = 1$ and these relations generate $A_1(7)$ by [11, p. 303]. Clearly, X SU (3, q), Y SL $(3, q^2)$. Now we need to show that Y SU (3, q), i.e., $Y(Y^u)' = 1$. This equation holds if and only if $r^{q+1} = 2^{-1}$. Let $x = (-7)^{1/2}$ then $x^2 = -7$ $F(q^2)$, $(x^{q-1})^2 = (-7)^{q-1} = 1$, hence $x^{q-1} = 1$ or -1. If $x^{q-1} = 1$ then x F(q) and q^3 $1 \pmod{7}$ by Lemma 2, this is contray to that $q^3 - 1 \pmod{7}$. Hence $x^{q-1} = -1$ and $x^q = -x$, let r = (x-1)/4, then $2r^2 + r + 1 = 0$ and $r^{q+1} = 2^{-1}$. Therefore, Y SU (3, q) and $A_1(7)$ is a subgroup of $A_2(q)$. Summaring the above argument, $A_1(2, 1)$ holds

(2 8) G is not of type ${}^{2}B_{2}(q)$, ${}^{2}F_{4}(q)$, $q=2^{2m+1}$.

 $|^2B_2(q)| = q^2(q^2+1)(q-1), q=2^{2m+1}, (q^2(q^2+1), 7)=1$, it follows that only the case " $q=1\pmod{1}$ " need to be considered. In this case, the Borel subgroup of $^2B_2(q)$ is a Frobennius group with kernel K of order q^2 and complement H of order q-1. Thus B is not 7-closed, and so $^2B_2(q)$ is not inner 7-closed group. $^2B_2(q)$ is a Levi subgroup of $^2F_4(q)$, if $^2B_2(q)$ is 7-group, then