By Radon-N ikodym theorem, there exists a non-negative measurable function g such that U (A) = $\int_A g d\mu$ whenever A belongs to S. Then for each n N, It is satisfied that $U_n(A) = U(A)$ $E_n(B) = \int_A E_n g d\mu$ We first show that $\int_A E_n g d\mu = \int_B g d\mu$

If g is a characteristic function, that is $g = \lambda_B$, B = S. Then $\int_A E_n g d\mu = \int_A g \lambda_E_n d\mu = \mu (A = B)$ $E_n = \mu_n (A = B) = \int_A \lambda_B d\mu_B = \int_A g d\mu_B$

It follows from the homogeneity and additivity of integral that the equality holds whenever g is a non-negative simple function. Hence $\int_A E_n g d\mu = \int_A g \mu_n$ holds for any non-negative measurable function g.

Then by Theorem 5 and $\int_A E_n g d\mu = \int_A g d\mu$, $L(^*U_n)(B) = \int_B (^*g) d(L(^*\mu_n))$ for each $B(L(^*S,^*\mu))$, the definition of $L(^*U)$ and Theorem 2 imply that

$$L(^{*}U(B)) = {}_{B}{}^{0}(^{*}g)d(L(^{*}\mu)).$$

We can easily obtain the following corollaries from theorem 5 and its extension

Corollary 1 Let μ and U be O-f in itemeasures on (X,S). Then $U \ll \mu$ if and only if $L (^*U) \ll L (^*\mu)$ and $d(L (^*U))/d(L (^*\mu)) = {}^0(^*(dU/d\mu))dU/d\mu$ is the Radon-N ikodry derivative of Uw ith respect to μ).

Corollary 2 Let μ and U be $0^{-}f$ in item easures on (X,S). If $g = d\mu/dU$, then f or every m easurable f unction f: X R, f is L(U)-integrable if and only if f O(X)-integrable and $\int f d(L(Y)) = \int f O(X) d(L(Y))$.

References

- [1] N. J. Cutland, N onstandard measure theorey and its application, BullLondon Math. Soc, 15 (1983), 526-589.
- [2] D. L. Cohn, Measure Theory, Birkhauser Boston, 1980
- [3] M. Davis, Applied N onstandard A nalysis, Wiley New York, 1977.

Loeb 空间中的 Radon-Nikodym 导数

陈东立

(西安建筑科技大学数学教研室, 710055)

摘 要

设 v 及 μ 为定义在可测空间 (X,S) 上的有限测度 本文首先证明了若 $v \ll \mu$ (即 v 关于 μ 绝对连续),则有 L (*S , $^*\mu$) \subset L (*S , *v). 进而证明了 $v \ll \mu$ 当且仅当 L (*v) \ll L ($^*\mu$) 并且 d (L (*v)) d (L ($^*\mu$)) = 0 (* ($dv/d\mu$)) 即 Loeb 空间中的 Radon-N ikodym 定理 本文按一种自然的方式定义了 σ -有限测度空间的 Loeb 空间,则以上结论可以推广到 σ -有限的情况

本文在扩大或 ω-饱和的非标准模型中讨论

Radon-Nikodym Derivative on Loeb Space

Chen Dong li

(Xi'an University of Architecture and Technology, 710055)

Abstract In this paper, we first show that if $\ll v$ is absolutly continuous with respect to μ , i.e., $v \ll u$, then $L(^*S,^*\mu) \subset L(^*S,^*v)$. We also prove that $v \ll \mu$ if and only if $L(^*v) \ll L(^*\mu)$ and $d(L(^*v))/d(L(^*\mu)) = {}^0(^*(d\mu/dv))$. We shall define the Loeb space of σ -finite measure space by a natural way and prove that the results above can be extended to σ -finite measure spaces

Keywords absolute continuity, Loeb space, Radon Nikodym Theorem, Radon Nikodym derivative

Classification AM S (1991) 28E05/CCL O 174 12

1 Loeb Spaces

Let (X, S, μ) be a totally finite measure space, then $({}^*X, {}^*S, {}^*\mu)$ is an internal, finitly additive measure space by transfer principle. The Loeb space with respect to (X, S, μ) can be defined as follows: Let ${}^*\mu$ and ${}^*\mu$ be maps from $P({}^*X)$ to R^+ {0} such that ${}^*\mu$ (A) = $\inf \{{}^0({}^*\mu)(B) : B$ *S and $A \subseteq B$ } and ${}^*\mu$ (A) = $\sup \{{}^0({}^*\mu)(C) : C$ *S and $C \subseteq A$ } for each subset A of *X .

Define L (*S , ${}^*\mu$) = { $A \subset {}^*X : {}^0\overline{\mu}(A) = {}^*\underline{\mu}(A)$ } and L (${}^*\mu$): L (*S , ${}^*\mu$) R {0}, such that L (${}^*\mu$) ($A = {}^*\overline{\mu}(A) = {}^*\underline{\mu}(A)$ for each A that belongs to L (*S , ${}^*\mu$). It is known that (*X , L (*S , ${}^*\mu$), L (${}^*\mu$)) is a complete standard measure space which is called the Loeb space with respect to measure space (X, S, μ).

If (X, S, μ) is a σ -finite measure space, we can define the Loeb space with respect to (X, S, μ) in the following natrual way: Let $\{E_n\}_n$ be an increasing sequence of sets which terms are in S such that $X = E_n$ and $\mu(E_n) < +$. For each n belongs to N, define a finite measure μ_n on (X, S) by letting $\mu_n(A) = \mu(A E_n)$ for each A belongs to S.

Let $L({}^*S, {}^*\mu) = L({}^*S, {}^*\mu_n)$ and $L({}^*\mu) : L({}^*S, {}^*\mu) = R^+ \{0\}$, such that $L({}^*\mu) (A) = \lim_{n \to \infty} L({}^*\mu_n) (A)$ for each $A(L({}^*S, {}^*\mu))$. It is obvious that $({}^*X, L({}^*S, {}^*\mu), L({}^*\mu))$ is a complete measure space. In fact $\sigma({}^*S) \subset L({}^*S, {}^*\mu)$. We call $({}^*X, L({}^*S, {}^*\mu), L({}^*\mu))$. the Loeb space with repect to the σ -finite measure space (X, S, μ) .

Theorem 1 Let (X, S, μ) be a finite measure space and f be a μ -integrable function, then (\dot{f}) is L $(\dot{\mu})$ -integrable and \dot{f} fd μ = $\int (\dot{f}) d(L(\dot{\mu}))$.

Proof W ithout loss of generality, assume that f is a non-negative function.

^{*} Received Sep. 6, 1994

Since f is μ -integrable, we have $\mu(X(f=+))=0$. Then $X(f=+)=X(f\geq n)$ and $\mu(X)<+$ implies that $\lim \mu(f\geq n)=\mu(X(f=+))=0$. Hence for every positive ϵ there exists n_0 N such that $\int_{(f\geq n)}f\,d\mu<\epsilon$ for each n N which satisfied $n\geq n_0$ by the absolute continuty of integral. It follows from the transfer principle that $\int_{-\infty}^{\infty}(f\geq n)^{-k}f\,d^{-k}\mu<\epsilon$

Let H be an arbitrary infinite natrual number. Then ${}^{\star}X$ (${}^{\star}f \ge H$) $\subset {}^{\star}X$ (${}^{\star}f \ge n$) for each n N implies that $\int ({}^{\star}f) d {}^{\star}\mu = 0$ that is, ${}^{\star}f$ is S-integrable. Applying Theorem 3.9 in [1] to ${}^{\star}f$, we have that ${}^{0}({}^{\star}f)$ is L (${}^{\star}\mu$)-integrable and ${}^{0}\int {}^{\star}f d {}^{\star}\mu = \int {}^{0}({}^{\star}f) d (L ({}^{\star}\mu)$.

Theorem 2 Let (X, S, μ) be a Off in item easure space and f be an $L (^*\mu)$ *m easurable function f ram *X to R. Then f is $L (^*\mu)$ -integrable if and only if f is $L (^*\mu_n)$ -integrable and sup $\{\int |f| d(L (^*\mu_n))\} < +$. If f is $L (^*\mu)$ -integrable then $\int f d(L (^*\mu)) = \lim \int f d(L (^*\mu_n))$.

Proof Let f be $L(^*\mu_n)$ -integrable and $\sup \int |f| d(L(^*\mu_n)) < +$. If f is a characteristic function, the proof is trivial. It follows from the homogeneity and additivity of integral that the sufficence is true for non-negative simple functions

W ithout loss of generality, suppose that f is non-negative. Then there is an increasing non-negative sequence $\{\mathcal{Q}_i\}_{R=N}$ of simple functions such that $\lim \mathcal{Q}_i(x) = f(x)$ for each x in X.

Since $\lim \mathcal{Q}(x) d(L(^*\mu_n)) = \mathcal{Q}(L(^*\mu))$ for each $k \in \mathbb{N}$, then $\lim \mathcal{Q}(L(^*\mu_n)) = \lim \mathcal{Q}(L(^*\mu)) = \int f d(L(^*\mu)).$

It is not difficult to verify that

$$\lim_{n \to \infty} \lim_{n \to \infty} \mathcal{Q}_d(L(^*\mu_n)) = \lim_{n \to \infty} \lim_{n \to \infty} \mathcal{Q}_d(L(^*\mu_n)) = \lim_{n \to \infty} \int_{\Omega} d(L^*\mu_n).$$

Hence $\lim \int f d(L(^*\mu)) = \int f d(L(^*\mu))$. Similarly, we can prove the necessarity.

2 Absolute Continuity and Radon-Nikodym Theorem

Let μ and v be measures on a measurable space (X, S). Then v is absolutly continuous with respect to μ if each set A that belongs to S and satisfies $\mu(A) = 0$ also satisfies v(A) = 0, which is denoted by $v \ll \mu$

Theorem 3 Let μ and U be finite measures on the measureable space (X, S). Then $U \ll \mu$ if and only if for each set A that belongs to \dot{S} and satisfies $\dot{\mu}(A) = 0$ also satisfies $\dot{U}(A) = 0$

Proof First suppose $v \le \mu$ Then for each positive ε there is a positive δ such that each s measurable set s that satisfies s s also satisfies s s (by [2], Lemma 4 2 1).

U sing transfer principle, ${}^{\star}\mu(A) < \delta$ implies ${}^{\star}U(A) < \epsilon$ for each A that belongs to ${}^{\star}S$. Hence ${}^{\star}\mu(A) = 0$ implies ${}^{\star}U(A) < \epsilon$ for each positive ϵ , that is, ${}^{\star}U(A) = 0$

Next suppose that ${}^{\star}\mu(A)$ 0 implies ${}^{\star}U(A)$ 0 for each A ${}^{\star}S$. Then the following assertion is true: For each positive ϵ , there exists δ ${}^{\star}R$ such that A ${}^{\star}S$ and ${}^{\star}\mu(A) < \delta$ implies ${}^{\star}U(A) < \epsilon$ (Take δ to be infinitesimal). It follows from transfer principle that there exists δ R such that A S and $\mu(A) < \delta$ implies $U(A) < \epsilon$, that is $U \ll \mu$

We have to use the following basic nonstandard tools to prove Theorem 4

Denumerable comprehension: For every internal set A and every function f; N = A, there is

an internal function g; *N A extending f.

O verflow principle: Let A be internal, $A \subset N$. If $n \in A$ for all finite $n \ge n_0$, then there is an infinite $H \cap N$ with $n \in A$ for all $n_0 \le n \le H$.

Theorem 4 Let μ and U be f in ite m easures on the m easurable space (X, S). If $U \ll \mu$, then $L (^*S, ^*\mu) \subset L (^*S, ^*U)$.

Proof Let A belong to $L(^*S, ^*\mu)$. Because $L(^*S, ^*\mu)$ is the $L(^*\mu)$ -completion of $\sigma(^*S)$, there exists $B = \sigma(^*S)$ and $C = \sigma(^*S)$ such that $B \subseteq A \subseteq C$ and $L(^*\mu)(B - C) = 0$

By the definition of L (*U), there is an increasing sequence $\{P_n\}_n$ N of sets who se term s in *S with $| ^*U(P_n) - L$ (*U) (B - C) $| \le 1/n$. U sing denumerable comprehension and O verflow, there is an infinite H_1 *N such that $| ^*U(P_n) - L$ (*U) (B - C) $| \le 1/n$ and $P_n \subset P_{H_1}$ for each $n \le H_1$. Then for each H_1 *N - N, H_2 H₁ implies that * $U(P_H)$ L (*U) (B - C).

Since $P_n \subseteq B$ - C for each n N, then $\mu(P_n)$ 0 for each n N. By infinitesimal prolongation theorem, there exists an infinite H_2 such that $\mu(P_m)$ 0 for all $m \le H_2$

Let $H = \min\{H_1, H_2\}$, then ${}^*\mu(P_H) = 0$ and ${}^*\nu(P_H) = L({}^*\nu)(B-C)$. Since ν is absolutly continuous μ , it follows from Theorem 3 that ${}^*\nu(P_H) = 0$, that is $L({}^*\nu)(B-C) = 0$, hence $A = L({}^*S, {}^*\nu)$.

The following theorem is the main result of this paper. We call it the Radon-Nikdoym theorem in Loeb space

Theorem 5 Let U and μ be finite measures on the measurable space (X, S) and $U \ll \mu$ Then there exists a non-negative S-measurable function g such that

$$L(^*U)(B) = {}_{B}(^*g)d(L(^*\mu))$$

for each B L (*S , $^*\mu$).

Proof Because $v \ll \mu$, it follows from Radon-Nikoym theorem that there exists a non-negative S-measurable function g such that $v(A) = \int g d\mu$ holds for each A that belongs to S. Transfer principle implies $v(A) = \int g d\mu$ for each A belongs to S.

Take an arbitrary set B in L (*S , ${}^*\mu$). By Theorem 4, B belongs to L (*S , ${}^*\upsilon$). It follows from the definition of L (${}^*\upsilon$) (B) that L (${}^*\upsilon$) (B) = $\sup\{{}^0({}^*\upsilon)$ (A): A *S , $A \subseteq B$ } = $\sup\{\int_A {}^0({}^*g) d(L({}^*\mu)) : A$ *S , $A \subseteq B$ }.

On the other hand, by the definition of L ($^*\mu$) (B) there exists an increasing sequence $\{B_n\}_n$ N of sets in *S , such that $B_n \subset B$ and $\lim_{n \to \infty} L$ ($^*\mu$) (B_n) = L ($^*\mu$) (B). Then it follows from the absolute continuity of integral that for each positive E there exists a set A in *S , such that $A \subset B$ and $\int_B {}^0(^*g) d(L(^*\mu)) \le \int_A {}^0(^*g) d(L(^*\mu)) + E$ Hence $L(^*U)$ (B) = $\sup\{\int_A {}^0(^*g) d(L(^*\mu)) : A {}^*S, A \subset B\} = \int_B {}^0(^*g) d(L(^*\mu)).$

Theorem 5 can be extended to the case in which μ and U are σ -finite measures on (X, S).

Let U and μ be O-finite measures on the measurable space (X, S) with $U \le \mu$ and $\{E_n\}_n$ be an increasing sequence of sets who se terms in S, such that $X = E_n$ and $\mu(E_n) < + U(E_n) < +$ for each n N. It is clear that $U \le \mu$ implies $U_n \le \mu_n$ for each n N.