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Conformally FlatM in mal Hyper surfaces
in a Hyperbolic Space

Jiang Sheng
(Dept of M ath , Yangzhou U niversity, Jiangsu 225002)

Abstract In thispaper it isproved that all the conformally flat minimal hypersurfaces in
a hyperbolic gpace are either rotational hypersurfaces or glued by some such pieces via
totally geodesic ones Combining this result with a previous theoren of W ang Xinmin
and Xu Zhicai, W e generalize a theoran of B lair about a generalization of catenoid
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1 Introduction and main result

A s aclassical theoran, it iswell know n that the catenoid is the only minimal surface of
revolution in the three dimensional Euclidean pace E> Of course it isconfomally flat Pro-
fesoorDavid E Blair [1] had obtained an interesting generalization of this property as fol-
low s

Theoren A LetM ", n= 4, be a conf omally flat, minimal hypersurf ace mmersed in E™*
ThenM " is either a hypersurf ace  revolution S™ *x M *w hereS™ *isa Euclidean ghere and
M 'isa plane curvew hose curvature Kas a f unction o arc length sisgivenby k= - (n- 1),

o= - 1/vand
1

o S
w hereA is a constant, orM " is totally geodesic
Recently Profesoor W ang X inmin and Profesor Xu Zhicai'” detem ined all minimal hy-
persurfaces of revolution in a hyperbolic pace They proved that the rotational minimal hy-
persurfaces in the hyperbolic pacemust be hyperplanesor generalized catenoids
Comparing the results in [1] and [2], one can ask: whether all the confomally flat

minimal hypersurfaces in a hyperbolic gpace are of revolution of not?

* Received Dec 30, 1994 Supported by NN SF.
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The aim of thispaperisto givean ansver to this question W e shallprove the follow ing
Theoran L etM "be a conf omally f lat, minimal hypersurf ace mmersed in an (n+ 1)- dimen-

n+ 1

sional hyperbolic space H ,N=4 Then eitherM "isa hypersurface d revolution 2" 'x M *,
w here 2" 'is either a geodesic phere, a horogphere, or an equidistant hypersurf ace, and M Yis
a plane curve, i e , acurvew hich liesin a totally geodesic surf aceH 2 orM " isglued by sane
such pieces via totally geodesic ones

Combining this Theorem w ith the Theoren 1 of W ang and Xu*~', wemay generalize the
result of Blair'” to the casew here the anbient manifold is a hyperbolic pace

Themanifolds considered here are assumed to be snooth and connected

(2]

2 Proof of Theoram

LetH ™" be an (n+ 1)-dimensional hyperbolic gace of negatively constant curvature
Ko,n=4 Of course it isconformally flat A coording to a theoren of Cartan and Schouten,
every conformally flat hypersurface of a conformally flat gace of dimension great than 4 is
quasiumbilical (see, for exanple, Chen'®, p. 154). Hence the conformally flat hypersurface
M "of H ™' is quasiumbilical, i e , there exist functions @ and § and a unit tangent vector
field U with its dual 1-form w, such that

h= og+ Bw® w
w here gand h are themetric and the second fundamental tensors, regectively.
Now inH ™ 'we choose a local section of the orthonomal frame bundle {E.}, u= 0, 1, 2,
,n, such that Eoisnomal toM ",E:=U (=0 it istangent toM "), E2, ,Enare tangent to
M " and orthogonal to U. In thisframe the tensor h has components as follow s

hu= h(U,U) = o+ B, h;j= h(Ej,E) = &
hy= h(U,E;) = 0, hx= h(Ej,Ex) = O(j;t k),

wherej, k=2, ,n
M oreover, sinceM "isminimal, it follow s that

hu=- (h- Do
L et {«f} be the dual basis in the cotangent bundle of H ™ !, the structure equations of
H™"are
dof = 0 o, dwv- of  wn=- é‘R_Maf o,
w here

Ruor= Ko(GuGr- GrGe), Wn= Yl
Restricting ontoM ", we have «f= 0, and then get the structure equationsof M ", the Gauss
equations, and the Codazzi equations N ote that

¥0b: hab(a,b: 1, 21 1n)1
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from Codazzi equationsw e get

%= 0, (1)
oY1= 0, (2)
(k- d) = 0(j £ k), (3
O1- nodjy = 0, (4

wherej, k=2, ,n,j%Z k, and
av= Eu(a) (b= 1,2, ,n).

If a= 0 at smepointA, then by (1) and (4) we know da= O atA. Hence the function
a does not have any ilated zero point

If a is identically zero, thenM " is totally geodesic in H ™ *, hence it is a hyperplane,
clearly it is a hypersurface of revolution

If az 0 at smepoint x M ", wemay consider the domain Q containing x inw hich a#
0 everywhere Then by (2), (3) and (4), we get

y111= 0, X1k= Xaj, Mlj = Mlk,

wherej, k=2, ,n;jZ k Therefore

dw= o w= %d o= Nd o+ Yd o
= Ji(%lk- ){dj)w (LF- yljl(kj U}: Q

So, in Q, M " can be foliated by a system of totally umbilical hypersurface 2" *, the integral
subm anifolds defined by w'= Q Considering both the Gauss equationsform " in H

n+ 1

and for
2" 'inM ", it follow s that such a 2" * is a submanifold w ith all points wnbilicsinH ™ *, and
hence it is either a geodesic gphere, a horogphere, or an equidistant surface T herefore, in
the domain forw hich a# 0, there existsa decompositionM "= X" *xM *, whereM " isan inte-
gral curve of the vector field U.

Now one computes the curvaturesof the curveM ‘inH ™ % Since the tangent vector field
of M ' isU, by the consequence of Codazzi equations, w e find that the first curvature is

k= (n- 1) [a],
and the second curvature is
K= 0,

therefore, by a theorem about the curves in amanifold of constant curvature (see, for examn-
ple, Spivak'), M ' lies in a 2-dimensional plane ganned by Ecand U in H
plane by P.

If each 2" * is a geodesic phere, then its center lies in the plane P. Considering another
integral curve of U, weobtain another plane P’ instead of P. A Il the centersof these pheri-

n+ 1

. Denote this

cal leavesof the foliation ofM " lie in both P and P’, and then in their intersection I, w hich

n+ 1

. LetG be the isometry group of H
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is a geodesic of anbient manifold H , and Go its sub-



group w hich keeps each point of ' fixed Then every geodesic here X" ' is an orbit of
Go SoM "isa hypersurface of revolution if az Q
If 2" *isahorophere, then it liesin a totally geodesic hypersurfaceH ". DenotebyB ™ *

and B " the Poicare’ s disk modelsforH ™ *and H ", resdectively. Then the horophere 2" *is
show n by an (n- 1)-ghere tangent to the boundary of themodel sphereB "at apointA (the

infinite point” in the direction of the nomal of £ *inH "). ThepointA lieson the bound-
ary of themodel phereB™*, toa Now in H ™' the" infinite point” A lies in both plane P
and P’, and then in their intersection I. It is the same for all those leaves of type horo-
ghere, 2 in thiscaseM "is a hypersurface of revolution, too, and the geodesic I is just its
rotational axis

Finally, let 2" * be an equidistant hypersurface Denote by x thepoint atw hich the leaf
2~ 'and the curveM " intersect By assume a# 0, o the first curvature of M * does not van-
ish HenceM " isnot a geodesic L et I' be the geodesic of H ™ * throughing x and tangent to
MY LetXZ beanother leaf neighbouring X" *, and x’ the intersection of ¥ and I The in-
tegral curve of vector field U throughing the point x’ is aplane curveM ', and the corre-
gonding plane will be denoted by P'. Two hyperbolic planes P and P’ intersect in the
geodesic I. Both the equidistant hypersurfaces 2" *and X are perpendicular to the geodesic
I', o these two equidistant hypersurfaces have a common base hyperplane In the ssmew ay
w e know that all those leaves of type equidistant hypersurfaces have a common base hyper-
plane, and then have a common perpendicular geodesic I From this it follow s thatM " is a
hypersurface of revolutionw ith geodesic I" as its rotational axis

Thus the Theorem is completely proved
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