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Abstract In thispaper, a nev algorithm-projected gradient type method of centers for
constrained optimization ispresented U nder the assumptionsof continuous differentia-
bility and nondegeneracy, the global convergence of the algorithm is proved The
method here is simple in computation and flexible in fom.
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1 Introduction

M ethod of centers is a class of mportant algorithm s for nonlinear progranming, w hich
has the advantages of feasible directionsm ethod and penalty function method, and can over-
ocome ome of their shortcom ings such as the requirement of feasibility of initial point for the
former and the uncertainty of penalty factor for the later[1, 2] How ever, the existingm eth-
odsof centersonly consider inequality constraints and use the subproblem sof linear/quadrat-
ic progranming to generate the search directions

In thispaper, we consider the follow ing problem:

(NP) minf(x), st x R={x R"|gi(x) =0,j L;ax- b=10i M},

wheref,g; C'(j L). L andM are finite index sets Since the linear constraints can be
treated directly, and some of the constraintsmay be required to be satisfied in practice, we
divideL into wo subsets L=L1 L2suchthatLin L2= @, and useonly g;(j L2) to con-
struct themerit(distance) function of (N P) w ith the paramnetery R"

f(x,y) = max{f (x) - f(y)- rRy),gi(x) - Hy),j Lz}, (11
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where r> 0, Hy)=max{0,g;(x),j Lz}. Then for the current iteration point

x Ri= {x R"|gix) =0,j Ly alx- b=0,i M}, (12
by using the projected gradient direction to generate the descent feasible direction of the
parametric progranming (P.):min{f (x,x*) |[x R1} at x= x*, aprojected gradient type
method of centersfor (NP) isobtained U nder the assumption of nondegeneracy, the global
convergence of themethod isproved Themethod is smple in computation and flexible in
fom.

2 Definitionsand Notations

Definition 2 1 Giveny R", JCL 2, dd ine the generalized pseudo directional derivative o
f(*,y) atx along d R"with repect toJ asfollavs
fi(x,y;d) = max{f (x) + vf(x)'d- f(y)- r#y);gi(x) + vgi(x)'d
- Ay),i Ir- fxy) (21
Since f (x,x)= 0, we obtain
fo(x,x;d) = max{vf(x)'d- rflx);gi(x) + vgi(x)'d- Hx),j I} (22
Denotef’ (x,y; d),f°(x,y; d) repectively for the directional derivative and the gener-
alized directional derivative’™ of f (*,y) at x alongd R"and f’ (x,y;d,p),f°(x,y;d,p)
for thoseof f (*,*) at (x,y) along (d,p) R™ 1:(x)={j Li]gi(x)=0}, 12(x)={j L:z|
9 ()= Fx)}, 1x)={j L |gi(x)=0} andJ (x)= 11(x) 12(x), the following lenma is
obvious See [3] in detail

Lenma2 1 (1) f' (x,x;d)=fi0x,x;d)=fs (x,x;d), VI212(x);
(2 ' (x,y;d)=1"(x,y;d,0=1°(x,y;d,0)=f°(x,y;d); I(x)=1(x), Vx R;
(3) For x,y,d,p R",t=0,30 (0,1) such that

f(x+ td,y+ tp) - f(x,y) < tf°(x+ Od,y+ Otp;d,p) = tf’ (x+ 6d,y + Otp;d,p).

If p= 0, then by (2), weobtain
f(x+ td,y)- f(x,y) <tf°(x+ 6d,y;d) = ' (x + 6td,y;d);

(@) 1M 606070 06y d) = M6t a0t 0y d) <0y d )=
(x ",y id).

Now, inorder to obtain the search direction of projected gradient type, we assume

(H) Vx Ri Rank{vgi(x),j Jx),a,i M}=p(x) ™|
Lenma 2 2 (H) holds if and only if for any bounded subset SSR1, there exists &> 0 such
that

Vx S,e (0,6], detNswo (x) Nsiwo (x) = 6, (23

w here

Nyo(x)={vg(x),j J;a,i M}, ford cL;JI(x,0 = l1(x,6 l2(x, €,
l(x,0 = {j Lijgi(x) =- &, 12(x,0 = {j Lagi(x)- Hx) =- &
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Proof The proof is similar to that of [4, Th 1] and isomitted
Letx Rz,J:121:1(x),J2212(x), J=J: J2such that detN,(x)'Ns(x)> Q DenoteB;
X)=Ns)INs )N ()T Pi(x)=E- Na(x)Bs(x)", w(x)=-Bs(x)"Vf(x), de

fine the follow ing directions

da(§)=- Py(x)VE(x)+ Bs(x)[vi(x) - P(x)&], (2 4)
whereforj J=J:1 Jo,
uj (x), if ub(x) < 0,
vix) =9- gi(x), if ub(x) = 0and g;(x) < 0, (2 5)

Hx) - gi(x), ifub(x)=0andg;(x)> Q
and fori M ,vi(x)= 0

_ 1, ifj J,
&={ ) P(x) = Q (2 6
0, ifj M™M;

Lenma2 3 (D Leta@,x)= [Psx) vV (x) [F+ ul x)vs (x)+ rH:x), then x(d,x) =0, and
®(J,x)= 0 implies that x isa Kuhn-Tucker (K-T) pointd (N P);
(2) If a3, x)> 0and P(x)> Osuch that - a(@,x)+ P(x)u (x) &< 0, then
fi,(x,x;ds(x)) < 0Oandaid; (x) = 0, Vi M,vg(x)'di(x) <0, j I:1(x),(27)

w hich means that ds (x) is a descent f easible direction o (Px) at x.

Proof By (2 5) and (2 6), we have
w (x)vs (x) = (ud (x))*+ - g () ub (x)
i3 gui ()< 0 j Jlé(x)zo

gj(x)SO
+ Z (Rx) - gi(x))ui(x) =0 (2 8
j Jz,uj(x)zo
gj(x)>0

hence (@, x)=Q If x(@,x)=0, then Ps(x) Vf (x)=10, us (x)vs (x)= 0and Ax)= 0, we
obtain
vi(x)+ N;(x)u(x) = 0,

u (x)vs (x) = > (U (x))2+ > - gi(xub(x) =0
i, SSue<o i, SFu=o
gj(x)SO

and x R, whichmeansu} (x)=0,u} (x)gi (x)=0,Vj J1 J221(x)={j L |gi(x)= 0},
that is, x isa K-T pointof (NP). (1) isproved

(2 7) can be obtained easily from (2 2), (2 4)-(2 6). Theproof is complete
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For convenience, we take P(x)= «(J,x)/(|u5 (x) & |+ 1) in the rest of the paper. It is

clear that if ®(J,x)> 0, then the conditionsinL enma 3 (2) hold

3 Algorithm and ItsConvergence
Algor ithm
Step 0 Given x° Rz 04,00, 8 (0,1), &> 0 {6}: 6=0, lm-w6=0Q Setk: =0

Step 1 Set Jix= |i(Xk, &), i= 1,2 Jv=Jik J2k
Step 2 If detN s, (x) N5, (x) = &, then go to Step 3; else, set &= oud go back to Step 1

Step 3 Compute 63 «, x*). If x(Jx, x*)= 0, stops else, go to Step 4
Step 4 Compute d*= ds, (x*) by the fomula (2 4).
Step 5 Compute stepsize &> 0 by one of the follow ing rules

Rule 1 x"+ td* Ru1, f (x+ td*,x)=< f (x*,x*)= 0, and
PO+ adx) = minf{f ¢+ x) [+ W R} + &

Rule 2 x*+ td* R, f (x*+ td",x") <f (x,x")= 0, |t- & |<&, where & isan optimal
olution of the problem mino=i={f (x"+ td*,x*) |[x"+ td* Ri}, ™ O
Rule 3 = max{t T [f (x"+ td", x*) <f (x, x*) + oetf .« (x*, x5 d), x*+ td* Ru},

whereT= {8, 8. . }

Step 6 Set x““ = x*+ td*, &+ 1 = &or &, ki = k+ 1, go back to Step 1

L enma 3 1Af ter entering Step 1 fran Step 2 finite times, the algorithm must go to Step 3

Lenma 3 2 If the algorithm generates inf inite sequence {x“} w hich has a cluster point x
then Imi-sof (X" % x*) = lmies o [f (X5 %)~ f (x,x)]=Q

Theoren 3 1 The algorithm either stgps at a K-T point x“d (N P) af ter finite iterations or

generates an inf inite sequence{xk} o w hich each cluster point isa K-T pointd (N P).

Proof By Lenma 2 3, we need only to prove the second conclusion
K

Let x  beacluster of {x"} such that {x}- -x ", then by Lenma 2 2, there exists &
0 such that &= e 0, Vk K. SinceJuw«, J2«are the subsetsof the finite index setsL 1,L 2 re-
gpectively, we can assume that Jix=Ji, Vk K (i= 1,2), thus

Jk=J=J1 J2,Vk K,andJi21i(x"), i= 1,23 2J3(").
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Sincef,g; C'(j L), wehave

Py (x) VF (x5 - oPs(x")VF (x).Bs () - oBs(x' ). us () - owx'). (3 1)

Furthemore, {vs (x)} isbounded, hence there existsan infinite subset K 10f K such that vs
Ky Ky
(x*)- »va. Therefore, a(3,x")- @, x )= [Ps (x )V (x7) [F+ w (x)Tva (x7)+ r®

K K

(x")=0, P(x")- i»P(x*)= O((J,X*)/(lu.] (x")"w |+ 1) and d*= dy (x¥) - :d*= ds(x")=
-Pix)VE(x )+Bs(x ) [va- PxT)S ]
Now, weprove that x(J,x )= Q
If x(3,x")>0, then P(x )>0and - a@,x )+ Px Jw(x )"&d< Q By (2 4- (2
6), we have
gi(x) + vgi(x)'d =- P(x)d, Vk K,j Iy
gi(x") + vgi(x)d“- RxY) =- P(x)E, Vk K,j I

K1

Letk- -+ o, weobtain
gi(x") + Vgl )Td" =- Px)E, V) Jn,gi(7)+ vgix )T - HxT) =- PixT)B, V) Je
Therefore, smilarway to the proof of Lenma 2 3 (2),we have
fi,x ,x;d")<0,vg(x)d <0 V] Ii(x")<cJs,ald =0,Vi M. (32
From (3 2), we can easily prove that
36> 0,Vt (0,0, I ki such that x“+ td* Ri1, Vk= kok Ku (33

A coording to the definition of t, we deduce a contradiction for Rule 1-3 regpectively.
Casel 1t isdefined by Rulel
For fixedt (0,6], byLenma2 1, 3 €& (0,1) such that
f O x ) - (K x) < f (K d ) x) - f (X9 + &

< tf’ (x*+ Btd", xd") + & Vk=k,k K

Ky

W ithout loss of generality, assume that & - -8 [0,1]. ByLenma3 2and 2 1, we
get
0= @rl(f x5 x% - f (x5 x9) s@[f’ (x*+ Etd" x%d) + &]
<f'(x" + 6td ,x";d").
Hence, O<Imc. o'f' (x + 6td",x ;d")<f’ (x",x;d )=<fs,(x",x ;d"), thiscontra
dicts (3 2).

Case 2 t«isdefined by Rule 2
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From the definition of tand (3 3), for fixed t

(01 6) N (Oy T], k2 kt, k
have

Ki, we

f X xN - f (x5 xY)

fxM+ td x) - fF(xX*+ td, x") + f(xM+ td x) - f (x5 x5

< f (x4 td x5 - f (x4 teds xM) + f (xK+ td x9)

f(x", x“).
Let f (x*+ td*, x*)- f (x*+ td*,x")= &, we can show that EM@' <Q Thus, replacing
& in Case 1 for & , we still obtain that f5,(x ", x ;d") =0, which contradicts (3 2).

Cae3 tisdefined by Rule 3

In this case, one and only one of the follow ing casesw ill occur:
() 3t (0,6]nT and k™ =k such that

fOx+ td xS - fF (xS = et fo,(xxd), Vk= k', k Ky
(i) Vt (0,0]n T, 3 KESK: such that
f O+ xS - f (X x9) > oetf s, (x5, x5 d), Vk K.

If (i) happens, then by the definition of t, =1t > 0, Vk=k ,k Kiand

fOCN xS - (K x) = et S, (X6, x5 d¥) < et S, (xS x5 dY), Vk = kT k

K1,
hence by Lenma 3 2, we have
0= Im[f (x5 %) - f (xS x9) et < I}'(mffz(xk,xk;d") = f5,(x",x";d")
1 1
If (ii) happens, then byLenma2 1, 3 @ (0, 1) such that
etf 5, (x*, x* d¥) < f (x"+ td,x") - f(xx) <t (x"+ &t x*5d), Vk K.

Smilar to the proof of Case 1, we have tetf 5,(x ", x ;d ) =<tf’ (x "+ @td ,x ;d), hence
oef 5,(x ", x";d") = lim (x"+ Btd ,x";d") =f (x",x;d") =f,,(x",x";d"),
t-0"
ie, (1- o)fs,(x ,x ;d )=0, which mpliesthat f5,(x ,x ;d )=0sincece (0, 1).
W e also deduce a contradiction if Case 3 happens
From the discussions above, w e obtain that ®(J,x )= 0, hence

Ax )= 0, w(x )'vi= 0, P(x)VF(x)=Q

(34
Consider the function h(u, g, 9: R®-R"* defined as
u?, u< 0
h(u,g, 9 =9 - ug, u=0g=<0

u(® g), u=0g>20
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It is clear that h is continuous at (u, g, 0), hence
K

ub (X)) (x)= h(ub (x9), g; (x), Bx¥)) - —h(ui(x"),g;(x"),0)
ub (x )7, wix)<o0 L
= o, . S, = wx )vi(x ) = u(x )vi,
WG ), W) = o W)= wk)w
since ®x )= Q
Therefore, us(x J)vsi=0ie ub(x Ivi(x )=ub(x )vi=0,Vj J mplies that

wkx) =0 ukxD)gx)=0V] J (3 5
From (3 4) and (3 5), weknow that x  isaK-T pointof (NP). The theoram istrue

Renark W henw e take &,= O for linear constraint g; (j L 1) or use the curvilinear search in-
stead of the line search in the algorithm, the results are still true
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