Spaces with a σ -Point F in ite Base

L in S hou
(N ingde Teachers' College, Fu jian 352100)

Abstract In this paper it is shown that spaces with a *o*-point finite base can be characterized by the images of metric spaces under certain maps

Key words Opoint finite base, open map, compact map, continuous map.

Classification AM S (1991) 54E40, 54E99/CCL O 189. 1

All spaces considered in this paper are T_{\perp}

In 1963, S. Hanai^[1] proved that a space has a σ -point finite base if and only if it is an image of a metric space under an open, compact and continuous map. L. F. Liu^[2] also obtained the same result. The first result in this paper is to point out a counter-example to show the result mentioned above is not true. Next we introduce the concept of inductive open, weak compact and continuous maps, and prove that a space has a σ -point finite base if and only if it is an image of a metric space under an inductive open, weak compact and continuous map.

First of all, we describe a relationship between spaces with a σ -point finite base and inages of metric spaces under open, compact and continuous maps. The following Lemma is well known, cf [3,4].

Lemma A T_2 space is a perfect space w ith a σ -point f in ite base if and only if it is an images of a metric space under an open, compact and continuous map.

Example There is a regular space X with a σ -point finite base which is not a perfect space

H. H. Corson and E M ichael^[5] has shown that there is a non-perfect, regular space X with a σ -point finite base (Example 6 4 in [5]). By Lemma, X is not an image of a metric space under an open, compact and continuous map. Thus Theorem 2 in [1] and Theorem 1 in [2] are wrong. The mistake of the proof of Theorem 1 in [2] is that the map f constructed in the proof of the necessity can not be a compact map because $f^{-1}(x)$ is only a subset of the compact subspace C_x of the metric space Π_{FNA} . Hence the following question can be raised: By means of what maps can the relationship between metric spaces and spaces with a

^{*} Received Nov. 24, 1994 Project supported by the NSF of Fujian Province

 σ -point finite base be established? Next we shall answer this question by the concept of inductive open, weak compact and continuous maps

Definition 1 Let Z be a space. A subset Y of Z is said to be weak compact in Z if the closure of Y in Z is compact in Z.

Definition 2L et g be a map f rom a space Z onto a space X. g is said to be inductive open, g weak compact and continuous if there is a subspace S of Z such that g is an open and continuous map f rom S onto X, and $g^{-1}(x)$ S is g each compact in Z for each g X.

Theorem A space has a σ -point finite base if and only if it is an image of a metric space under an inductive open, we ak compact and continuous map.

Proof N ecessity. By the proof of the necessity of Theorem 1 in [2], there are a metric space $Z (= \prod_{i \in N} A_i)$, a subspace S of Z and an open and continuous map f from S onto X such that there is a compact subspace C_x of Z with $f^{-1}(x) \subseteq C_x$ for each $x \in X$. Take a point $x \in X$. We define a map g from Z onto X by

$$g(z) = \begin{cases} f(z), & z = S, \\ x_0, & z = Z \end{cases}$$

It is easy to check that g is an inductive open, weak compact and continuous map from Z onto X.

Sufficiency. Let g be an inductive open, weak compact and continuous map from a metric space Z onto X. Then there is a subspace S of Z such that g ls is an open, continuous map from S on to X, and $g^{-1}(x)$ S is weak compact in Z for each x X. Let f = g ls. Since Z is metric, it has a σ -locally finite base \mathbf{B} by the classical N agata-Sm irnov metrization theorem. Denoted \mathbf{B} by $\{\mathbf{B}_n: n \mid N\}$, where \mathbf{B}_n is locally finite in Z for each n N. Put

$$\mathbf{P} = \{\mathbf{P}_n: n \in \mathbb{N}\},\$$

where $\mathbf{P}_n = \{f(B \mid S): B \mid \mathbf{B}_n\}$ for each $n \mid N$, then \mathbf{P} is a base of X because f is an open and continuous map from S onto X. For each $x \mid X$, $f^{-1}(x)$ is compact in Z, then

$$\{\overline{f^{-1}(x)} \quad B:B \quad \mathbf{B}_n\}$$

is finite by the locally finiteness of \mathbf{B}_n , thus

$$\{\overline{f^{-1}(x)} \quad B \quad S:B \quad \mathbf{B}_n\}$$

is finite Since $f^{-1}(x)$ is closed in S,

$$\overline{f^{-1}(x)} \qquad S = f^{-1}(x),$$

hence $\{f^{-1}(x) \mid B \mid S:B \mid \mathbf{B}_n\}$ is finite, therefore \mathbf{P}_n is point finite at point x. So, \mathbf{P} is a σ -point finite base for X, i.e., the space X has a σ -point finite base

References

- [1] S. Hanai, Open mappings and metrization theorems, Proc. Japan Acad., 39 (1963), 450-454
- [2] L. F. Liu, Open, compact, continuous mappings and Openint finite bases (Chinese), Hunan Annals Math, 9(1989), 120-123.
- [3] Dai Mum in, O-pointw ise collectionw ise normality, O-m etacompactness and O-point finite bases (Chinese), Acta Math. Sinica, 24(1981), 656-667.
- [4] A. Arhangel'skii, On mappings of metric spaces (Russian), Dokl Akad Nauk SSSR, 145: 2(1962), 245-247.
- [5] H. Corson, E. M. ichael, M. etrizability of certain countable unions, Illinois J. M. ath., 8 (1964), 351-360

具有 σ 点有限基的空间

林 寿 (福建宁德师范高等专科学校, 352100)

摘要

本文纠正了Hanai等用开紧连续映射刻画具有 σ 点有限基的空间的一个错误,定义了诱导开的弱紧连续映射建立度量空间与具有 σ 点有限基空间的映射联系