Some Combinatorial Identities on Lattice- Point Poset

M a X in rong

(Department of Mathematics, Suzhou University, Suzhou 215006)

Abstract This paper is devoted to the counting of j - chains of lattice-point poset. The incidence function and two basic enumerators associated with it are introduced and evaluated. Our results contain a lot of combinatorial sums

Keywords poset, identity, convolution

Classification AM S (1991) 05A 15/CCL O 157. 1

1 Introduction

The following formulae are widely used combinatorial identities[1].

$$\sum_{k=0}^{p} \binom{n}{k} \binom{m}{p-k} = \binom{n+m}{p}, \tag{1. 1}$$

$$\sum_{k=0}^{n} {k+x \choose x} {n-k+y \choose y} = {n+x+y+1 \choose x+y+1},$$
 (1.2)

$$\sum_{k=0}^{n} \frac{\alpha}{ak + \alpha} \begin{pmatrix} ak + \alpha \\ k \end{pmatrix} \frac{\beta}{a(n-k) + \beta} \begin{pmatrix} a(n-k) + \beta \\ n-k \end{pmatrix}$$

$$= \frac{\alpha + \beta}{an + \alpha + \beta} \begin{pmatrix} an + \alpha + \beta \\ n \end{pmatrix}.$$
(1.3)

^{*}Received September 19, 1995. Supported by the NSF of China

lattice-paths instead of [m + n] in the above argument, we get combinatorial proofs of (1.2) and (1.3) at once See [2, 3] for details. In the present paper, we apply this idea to the lattice-point poset (partially ordered set, for short), and obtain some combinatorial identities which may be viewed as generalizations of (1.1)- (1.3). For simplicity, the reader is referred to [5] for the notations and term inology of poset

2 Main Results

Let N^m be the set of all m - tup les $x = (x_1, x_2, ..., x_m)$ of non-negative integers, called lattice point, and let $n = (n_1, n_2, ..., n_m)$ be a fixed element of N^m . We may make N^m be a poset with order relation \leq defined by $x \leq y$ iff $x_i \leq y_i$, i = 1, 2, ..., m.

Definition 1 A lattice-point poset with respect to \overline{n} is the principal order ideal generated by \overline{n} , namely say, $\Lambda_{m}(\overline{n}) = 3D\{\overline{x} \ N^{m} \mid \overline{x} \leq \overline{n}\}$. A linearly ordered j-subset of $\Lambda_{m}(\overline{n})$ is called a j-chain of $\Lambda_{m}(\overline{n})$.

The purpose of this paper is to count j - chains of $\Lambda_m(\overline{n})$. We begin with some elementary enumerative functions as follows

Definition 2 Suppose that $A_m^j(\overline{n})$ is the set of all j-chains of $\Lambda_m(\overline{n})$ and let $B_m^j(\overline{n})$ and $C_m^j(\overline{n})$ denote the sets of the j-chains in $\Lambda_m(\overline{n})$ that contain 0 and 0 and \overline{n} , respectively. Then, G-, F-and λ -function are respectively defined by $G_m^j(\overline{n}) = \left| A_m^j(\overline{n}) \right|$, $F_m^j(\overline{n}) = \left| B_m^j(\overline{n}) \right|$ and $\lambda_n^j(\overline{n}) = \left| C_m^j(\overline{n}) \right|$ λ -function is also called the incidence function of $\Lambda_m(\overline{n})$.

In what follows, we adopt some multidimensional notations, only for convenience $\forall \overline{n} = (n_1, n_2, ..., n_m)$ N^m , define $\Delta(\overline{n}) = (n_2, n_3, ..., n_m)$ and $|\overline{n}| = \sum_{i=0}^m n_i$. Let $H(\overline{n})$ be a function on N^m . Then we write $\overline{n} = (n_1, \Delta(\overline{n}))$ and $H(\overline{n}) = H(n_1, \Delta(\overline{n}))$.

Here, we come to our main results

Theorem 1 Let $\Lambda_m(n)$ be defined as above. Then

$$F_{m}^{j}(\overline{n}) = F_{m}^{j}(n_{1} - 1, \Delta(\overline{n})) + \sum_{\Delta(\overline{x}) \leq \Delta(\overline{n})_{j_{1} + j_{2} = j}} F_{m-1}^{j_{1}}(\Delta(\overline{n} - \overline{x})) F_{m}^{j_{2}}(n_{1} - 1, \Delta(\overline{x})), \quad (2 1)$$

$$\lambda_{n}^{j}(\overline{n}) = F_{m}^{j-1}(n_{1} - 1, \Delta(\overline{n})) + \sum_{0 < \Delta(\overline{x}) \leq \Delta(\overline{n})^{j_{1}+j_{2}=j}} \lambda_{n-1}^{j_{1}-1}(\Delta(\overline{n} - \overline{x})) F_{m}^{j_{2}}(n_{1} - 1, \Delta(\overline{x})), \quad (2 2)$$

$$G_m^j(\overline{n}) = F_m^j(\overline{n}) + F_m^{j+1}(\overline{n}), \qquad (2 3)$$

$$F_m^j(\overline{n}) = \chi_n^j(\overline{n}) + \chi_n^{j+1}(\overline{n}), \qquad (2 4)$$

where $n - x = (n_1 - x_1, n_2 - x_2, ..., n_m - x_m)$.

Proof We only prove $(2\ 1)$, the rest can be proved in the similar way. To do this, observe that the left-hand side of $(2\ 1)$ is just the cardinality of $B_m^j(\overline{n})$. Let X be an arbitrary element of $B_m^j(\overline{n})$. Obviously, X may intersect the hyperplane $x_1=3Dn_1$ or not If X does not intersect the hyperplane $x_1=n_1$, then there are $F_m^j(n_1-1,\Delta(\overline{x}))$ choices for X $B_m^j(\overline{n})$. Suppose that X intersects the hyperplane $x_1=n_1$ in j_1 lattice points which contain \overline{x} as the minimal lattice point. There are $F_{m-1}^{j_1}(\Delta(\overline{n}-\overline{x}))$ choices for X $\{\overline{y} \mid \overline{x} \leq \overline{y} \leq \overline{n}\}$, and $F_m^{j_2}(n_1-1,\Delta(\overline{x}))$ $(j_1+j_2=j)$

choices for the remaining j_2 lattice points X $\{\overline{y} \mid \overline{y} \leq \overline{x}, y_1 \leq n_1 - 1\}$. Thus there are $F_{m-1}^{j_1}(\Delta(\overline{n-x}))F_m^{j_2}(n_1-1,\Delta(\overline{x}))$ ways totally that X $\{\overline{y} \mid \overline{x} \leq \overline{y} \leq \overline{n}\}$ can have j_1 lattice points of which \overline{x} is the minimal lattice point. Summing over $\Delta(\overline{x})$ and $\{(j_1, j_2) \mid j_1 + j_2 = j\}$ gives the total number of j - chains X that intersects the hyperplane $x_1 = n_1$. This completes the proof

Certainly, these recurrence relations will lead to the explicit forms of F - , G - and λ -functions

Theorem 2 Let $\Lambda_n(\overline{n})$ be the lattice-point poset with respect to \overline{n} , and F-, G- and λ -function as given by D of inition 2. Then

$$F_m^h(\overline{n}) = \sum_{\forall (x) \le \forall (\overline{n})} \left(\begin{array}{c} \nabla (\overline{n}) \\ \nabla (\overline{k}) \end{array} \right) \left(\begin{array}{c} \Delta(\overline{n}) \\ \nabla (\overline{k}) \end{array} \right) _0$$
 (2.5)

$$G_{m}^{h}(\overline{n}) = \sum_{\nabla (x) \leq \nabla (\overline{n})} \left(\nabla (\overline{n}) \over \nabla (\overline{k}) \right) \left(\Delta(\overline{n}) \over \nabla (\overline{k}) \right)_{1}$$

$$(2 6)$$

$$\lambda_{n}^{h}(\overline{n}) = \sum_{\nabla (x) \leq \nabla (\overline{n})} \left(\frac{\nabla (\overline{n})}{\nabla (\overline{k})} \right) \left(\frac{\Delta(\overline{n})}{\nabla (\overline{k})} \right)_{-1},$$

$$w \ here \ \nabla (\overline{k}) = (k_{1}, k_{2}, ..., k_{m-1}, (\left(\frac{\nabla (\overline{n})}{\nabla (\overline{k})} \right) = \prod_{i=1}^{m-1} {n_{i} \choose m_{i}}, and$$

$$(2.7)$$

$$\begin{pmatrix}
\Delta(\overline{n}) \\
\nabla(\overline{k})
\end{pmatrix}_{s} = \begin{pmatrix}
n_{1} \\
i
\end{pmatrix} \begin{pmatrix}
n_{2} + i \\
i
\end{pmatrix} \begin{pmatrix}
n_{2} \\
j
\end{pmatrix} \begin{pmatrix}
n_{3} + i + j \\
i + j
\end{pmatrix} \dots$$

$$\begin{pmatrix}
n_{m-1} \\
k
\end{pmatrix} \begin{pmatrix}
n_{m} + i + j + \dots + k \\
i + j + \dots + k
\end{pmatrix} \begin{pmatrix}
n_{m} \\
n_{m} \\
k + s - 1 - (i + j + \dots + k)
\end{pmatrix}.$$

Proof We only prove $(2\ 5)$. $(2\ 7)$ can be proved by the same argument and $(2\ 6)$ can be verified directly by $(2\ 3)$ and $(2\ 5)$. We first apply induction on m. It is clear that $(2\ 5)$ holds for $m=3D\ 1$. Suppose that m>1 and $(2\ 5)$ holds for m=m-1. Let $\overline{n}=(n_1,n_2,...,n_m)$ N^m . We proceed induction on n_1 . When $n_1=0$, it follows from the definition of F - function that $F_m^h(\overline{n})=F_{m-1}^h(\Delta(\overline{n}))$. From the above hypothesis, we have

$$F_{m-1}^{h}(\Delta(\overline{n})) = \sum_{i=0}^{n_2} \binom{n_2}{i} \binom{n_3+i}{i} \sum_{j=0}^{n_3} \binom{n_3}{j} \binom{n_4+i+j}{i+j} \sum \dots \sum_{k=0}^{n_{m-1}} \binom{n_{m-1}}{k} \binom{n_m+i+j+\dots+k}{i+j+\dots+k} \binom{n_m}{h-1-(i+j+\dots+k)}.$$

This implies (2 5) holds for $n_1 = 0$. We further assume that $n_1 > 0$ and (2 5) holds for any = 20 $\overline{n} = (n_1, n_2, ..., n_m)$ N^m with $n_1 \le n_1 - 1$. Then from both hypotheses, we may get by (2 1) that

$$F_{m}^{h}(\overline{n}) = \sum_{i=0}^{n_{1}-1} \binom{n_{1}-1}{i} \binom{n_{2}+i}{i} \sum_{j=0}^{n_{2}} \binom{n_{2}}{j} \binom{n_{3}+i+j}{i+j} \sum \dots$$

$$\sum_{k=0}^{n_{m-1}} \binom{n_{m-1}}{k} \binom{n_{m}+i+j+\dots+k}{k+j+\dots+k} \binom{n_{m}}{h-1-(i+j+\dots+k)}$$

$$+ \sum_{i=0}^{n_{1}-1} \binom{n_{1}-1}{i} \binom{n_{2}+1+i}{1+i} \sum_{j=0}^{n_{2}} \binom{n_{2}}{j} \binom{n_{3}+1+i+j}{1+i+j} \sum \dots$$

$$\sum_{k=0}^{n_{m-1}} \binom{n_{m-1}}{k} \binom{n_{m}+1+i+\dots+k}{1+i+j+\dots+k} \binom{n_{m}}{h-2-(i+j+\dots+k)}$$

$$= \sum_{i=0}^{n_{1}} \binom{n_{1}-1}{i} \binom{n_{m}-1}{k} \binom{n_{m}+i+j+\dots+k}{i+j+\dots+k} \binom{n_{m}}{h-1-(i+j+\dots+k)}$$

$$= \sum_{i=0}^{n_{1}} \binom{n_{1}}{i} \binom{n_{2}+i}{i} \sum_{j=0}^{n_{2}} \binom{n_{2}}{j} \binom{n_{3}+i+j}{i+j} \sum \dots$$

$$\sum_{k=0}^{n_{m-1}} \binom{n_{1}}{i} \binom{n_{2}+i}{i} \sum_{j=0}^{n_{2}} \binom{n_{2}}{j} \binom{n_{3}+i+j}{i+j} \sum \dots$$

$$\sum_{k=0}^{n_{m-1}} \binom{n_{m-1}}{i} \binom{n_{2}+i}{i} \sum_{j=0}^{n_{2}} \binom{n_{2}}{j} \binom{n_{3}+i+j}{i+j} \sum \dots$$

$$\sum_{k=0}^{n_{m-1}} \binom{n_{m-1}}{k} \binom{n_{m}+i+j+\dots+k}{i+j+\dots+k} \binom{n_{m}}{h-1-(i+j+\dots+k)}$$

as desired

Theorem 3 Let \overline{n} N^m . Then

$$\prod_{l=1}^{m} \binom{n_l + j}{j} = \sum_{i=0}^{j} \binom{j}{i} F_m^{i+1}(\overline{n}), \qquad or$$
 (2.8)

$$F_m^{j+1}(\overline{n}) = \sum_{i=0}^{j} (-1)^{j-i} {j \brack i} \prod_{l=1}^{m} {n_l + i \brack i}.$$
 (2.9)

N ote that (2.8) holds for $j \leq \lceil \overline{n} \rceil$.

Proof Clearly, when $j \leq |\overline{n}|$, (2 8) and (2 9) is a pair of inverse relation, it suffices to prove (2 8). Let $D(\overline{n}, j) = \{(\overline{a_1}, \overline{a_2}, ..., \overline{a_j}) | 0 < \overline{a_1} \leq \overline{a_2} \leq ... \leq \overline{a_j}, \overline{a_i} = (n_i^{(1)}, n_i^{(2)}, ..., n_i^{(m)}) \land \Lambda_m(\overline{n}) \}$ and $D(\overline{n}, j; i) = \{(\overline{a_1}, \overline{a_2}, ..., \overline{a_j}) | 0 < \overline{a_1} \leq \overline{a_2} \leq ... \leq \overline{a_j} \text{ with exactly } i \text{ distinct lattice points in } \overline{a_1}, \overline{a_2}, ..., \overline{a_j}\}, i = 0, 1, ..., j, j \leq |\overline{n}|$ It is easy to see that $D(\overline{n}, j) = \int_{i=0}^{j} D(\overline{n}, j; i)$ and $D(\overline{n}, j; i)$ $D(n, j; i) = \emptyset$ (i i). Furthermore, with aid of counting of lattice paths, we know that $|D(\overline{n}, j)| = \prod_{l=1}^{m} \binom{n_l + j}{j}$. On the other hand, from the definition of $F_m^j(\overline{n})$, it follows that there are $F_m^{i+1}(\overline{n})$ choices for i distinct no nzero lattice points, without loss of generality, denoted

by $\overline{a_1} < \overline{a_2} < \ldots < \overline{a_i}$, and $\binom{j}{i}$ ways such that $(\overline{a_1}, \ldots, \overline{a_1}, \overline{a_2}, \ldots, \overline{a_2}, \ldots, \overline{a_i}, \ldots, \overline{a_i})$ $D(\overline{n}, j; i)$. Thus $|D(\overline{n}, j; i)| = \binom{j}{i} F_m^{i+1}(\overline{n})$. Summing over i gives the cardinality of $D(\overline{n}, j)$. This com-

Suppose that σ be an element of permutation group S_n of 1, 2, ..., n. Define $\sigma(\overline{n}) = (n\sigma(1), n\sigma(2), ..., n\sigma(n))$. Based on Theorem 3, we have that $F_m^{j+1}(\overline{n}) = F_m^{j+1}(\sigma(\overline{n}))$. For m = 2. Then it implies that

$$\sum_{i=0}^{n} {n \choose i} {m+i \choose i} {m+1 \choose n-i} = 3D \sum_{i=0}^{m} {m \choose i} {n+i \choose i} {n+1 \choose n-i}.$$

$$(2 10)$$

Further, let n, it leads to

pletes the proof.

$$\sum_{i=0}^{m} {m \choose i} {j \choose j} = {m+j \choose j}. \tag{2 11}$$

Remark (2 10) has been posed as an interesting problem to SAM Review and published on it $^{[6]}$ Now, many a solutions including WZ-method as well as hypergeometric series has been found

Put $j = \lfloor n \rfloor$ and $\lfloor n \rfloor$ - 1 in (2.9), respectively, we have

$$\begin{bmatrix}
|\vec{n}| \\
n_1, n_2, \dots, n_m
\end{bmatrix} = \sum_{i=0}^{|\vec{n}|} (-1)^{|\vec{n}|-i} \begin{bmatrix} |\vec{n}| \\ |\vec{n}| \end{bmatrix} \prod_{l=1}^{m} \begin{bmatrix} n_l + i \\ i \end{bmatrix},$$
(2 12)

$$\sum_{i=0}^{|\overline{n}|-1} (-1)^{|\overline{n}|-1} \begin{bmatrix} |-1| & |-1| \\ |-1| & |-1| \end{bmatrix} \prod_{i=0}^{m} \begin{bmatrix} n_i + i \\ i \end{bmatrix} = \frac{|\overline{n}|^2 - \sum_{i \leq j} n_i n_j}{|\overline{n}|} \begin{bmatrix} |\overline{n}| \\ n_1, n_2, \dots, n_m \end{bmatrix}.$$
 (2.13)

A lso, put m = 2 and $n_2 = 0$ in (2 9), we have

$$\begin{pmatrix} n \\ j \end{pmatrix} = \sum_{i=0}^{j} (-1)^{j-i} \begin{pmatrix} j \\ i \end{pmatrix} \begin{pmatrix} n+i \\ i \end{pmatrix}.$$
(2 14)

Similarly, Vondemonde- type convolution identities stated below can also be established by counting of j - chains of lattice- point poset

Theorem 4 Let F^- , G^- and λ^- f unction be given by D ef inition 2. Then the following identities hold for all $j_1, j_2 = N$, $n = N^m$.

$$F_{m}^{j_{1}+j_{2}-1}(\overline{n}) = \sum_{\substack{0 \le \overline{k} \le \overline{m}}} \lambda_{n}^{j_{1}}(\overline{k}) F_{m}^{j_{2}}(\overline{n} - \overline{k}), \qquad (2 15)$$

$$G_m^{j_1+j_2-1}(\overline{n}) = \sum_{\substack{0 \le \overline{k} \le \overline{n}}} F_m^{j_1}(\overline{k}) F_m^{j_2}(\overline{n} - \overline{k}), \qquad (2.16)$$

$$\lambda_{n}^{j_{1}+j_{2}-1}(\overline{n}) = \sum_{\substack{0 < \overline{k} < \overline{n}}} \lambda_{n}^{j_{1}}(\overline{k}) \lambda_{n}^{j_{2}}(\overline{n} - \overline{k}).$$
 (2 17)

Proof Suppose that \overline{k} is an arbitrary element of $\Lambda_m(\overline{n})$ such that $(j_1 + j_2 - 1)$ - chains X with \overline{k} X of $\Lambda_m(\overline{n})$ intersects $\Lambda_m(\overline{k})$ in j_1 lattice points and intersects $\{\overline{x} \mid \overline{k} \leq \overline{x} \leq \overline{n}\}$ which is isomorphic to $\Lambda_m(\overline{n} - \overline{k})$ in j_2 lattice points. Then (2.15) emerges immediately from the counting of $B_m^{j_1+j_2-1}(\overline{n})$ over all such \overline{k} . (2.16) and (2.17) can be derived in similar way.

Finally, we list a few useful forms of these identities to claim their broad range

Putm = 1 in (2 16), we have

$$\sum_{k=1}^{n} { \begin{pmatrix} k-1 \\ j_1-2 \end{pmatrix} \begin{pmatrix} n-1-k \\ j_2-2 \end{pmatrix} = \begin{pmatrix} n-1 \\ j_1+j_2-3 \end{pmatrix}}.$$
 (2.18)

Put m = 2 in (2 15), we have

$$\sum_{k_{1}=0}^{n_{1}} \sum_{k_{2}=0}^{n_{2}} \left\{ \sum_{i=0}^{k_{1}} \binom{k_{1}}{i} \binom{k_{2}+i}{i} \binom{k_{2}+i}{i} \binom{k_{2}}{j_{1}-1-i} \right\}$$

$$\times \left\{ \sum_{i=0}^{n_{1}-k_{1}} \binom{n_{1}-k_{1}}{i} \binom{n_{2}-k_{2}+i}{i} \binom{n_{2}-k_{2}+i}{j_{2}-1-i} \binom{n_{2}-k_{2}}{j_{2}-1-i} \right\}$$

$$= \sum_{i=0}^{n_{1}} \binom{n_{1}}{i} \binom{n_{2}+i}{i} \binom{n_{2}+i}{j_{1}+j_{2}-1-i}.$$
(2.19)

Take (2 9) into (2 19). Then, we have

$$\sum_{i=0}^{j_1+j_2-2} \binom{2}{j_1+j_2-2} \binom{n_1+1+i}{1+i} \binom{n_2+1+i}{1+i}$$

$$= \sum_{i=0}^{n_1} \binom{n_1}{i} \binom{n_2+i}{i} \binom{n_2+1}{j_1+j_2-1-i}. \tag{2.20}$$

References

- [1] H. W. Gould, Can binatorial Identities, Morgantown Printing and Binding Co (1972), 22
- [2] R. C. Lyness, A 1 Cap one and the death ray, M ath Gaz, 25 (1941)m, 283-287.
- [3] T. V. Narayana, Lattice Path Combinatorics with Statistical Applications, Mathematical Expositions No 23, Toronto: University of Toronto Press (1979), 81-103
- [4] Wang Tianming and Ma Xinrong, the lattice-path poset and combinatorial identities (in Chinese), J. Dalian University of Technology, 34: 6(1994), 628-632
- [5] R. P. Stanley, Enumerative Combinatorics: Vol I, California: Wadsworth Inc, 1986, 96-148
- [6] Wang Tianming, Ma Xinrong, Two combinatorial identities, SAM Review, March, 1995.