π -Frattin i Subgroup and π -Local Formation

Chen Zhongm u[†]

(Inst of Math, Southwest China Nomal University, Chongqing 400715)

Abstract In this paper, our purpose is to make the results about π -Frattini subgroup more accurate, and to extend Gasch $\ddot{u}z$ Theorem about nilpotency to π -locally defined formation W e come to

Theorem Let G be a finite group, H a subnormal subgroup of G. If H/H $\Phi(G)O\pi(G)$ \mathbf{F} , then H $\mathbf{F}\pi$, where $\mathbf{F}\pi$ is Troolvable Trocally defined formation.

Keywords π-Frattini subgroup, π-locally defined formation, Gasch üz theorem.

Classification AM S (1991) 20D 20, 20F17/CCL O 152 1

All groups mentioned in this paper are finite groups. For a group $G, H \triangleleft \triangleleft G$ denotes H is a subnormal subgroup of $G; M \triangleleft G$ denotes M is a maximal subgroup of G. All other notations are standard

It is well-known that the Frattini subgroup of a group plays a very important role in researching locally defined formation. Similar to Frattini subgroup, several kinds of subgroups are defined and learned (refer to [1]). Some of them are related to formation, such as $\Phi_P(G)$ [2, Appedix C, §4], $\mathcal{Q}(G)$ defined by Deskin (1, p418, Def, 3.3.1]), and $\Phi_P(G)$ with more general meaning^[3]. The following definition is slightly different to the definition of $\Phi_P(G)$ in [3].

Suppose π is a set of primes, G is a group. If G has a maximal subgroup M, such that G:M is a π -number. Define

$$\Phi_{\pi}(G) = \{M \mid M < \bullet G, \mid G:M \mid \text{is a π-num ber}$$
 (1)

O therw ise, define $\Phi_{\pi}(G) = \Psi_{\pi}(G) = \Phi(G)O_{\pi}(G)$.

Remark In [3], $\Phi_{\pi}(G) = \{M \mid M < \cdot G > (\mid G: M \mid, p) = 1, p = \pi\}$. This $\Phi_{\pi}(G)$ may be viewed as $\Phi_{\pi}(G)$ in (1) if we take $\pi = \pi$ and $\Phi_{\pi}(G) = G$ while the maximal subgroup as in (1) does not exist

If $\pi = p$, then $\Phi_{\pi}(G)$ in (1) is $\mathscr{Q}(G)$ defined by Deskin^[1]. If $\pi = \{p\}$, then $\Phi_{\pi}(G) = \Phi_{p}(G)^{[2]}$.

*Saldy, the passed away on February 16, 1998

^{*}Received October 7, 1996 Project supported by the National Natural Science Foundation of China

In this paper, we shall extend the results about $\Phi_{\pi}(G)$ obtained before and make them more accurate And we shall unify the Gasch üz Theorem about nipotency and theorems about p-closed groups in [1], and extend them to π -local formation.

Lemma 1 1) $\Phi_{\pi}(G)$ char G; 2) $\Phi(G) \leq \Phi_{\pi}(G)$; 3) $\Phi_{\pi}(G/N) \geq \Phi_{\pi}(G)N/N$, equality appears if $N \leq \Phi_{\pi}(G)$.

Proof The Lemma follows by the definition of $\Phi_{\pi}(G)$.

Lemma 2 1) $O_{\pi}(G) \leq \Phi_{\pi}(G)$; 2) $O_{\pi}(\Phi_{\pi}(G)) \leq \Phi(G)$. Further, if $\Phi_{\pi}(G)$ is a π -g roup, then $\Phi_{\pi}(G) \leq \Phi(G)$, so $\Phi_{\pi}(G) = \Phi(G)$.

Proof 1) If $O_{\pi}(G) \not \leq \Phi_{\pi}(G)$, then there exists $M < \cdot G$, such that |G:M| is a π -number and $M \not \geq O_{\pi}(G)$. So $G = M O_{\pi}(G)$. Therefore

$$|G:M| = |M O_{\pi}(G):M| = |O_{\pi}(G):M| O_{\pi}(G)|$$

is a π -number, a contradiction to choose of M.

2) If $O_{\pi}(\Phi_{\pi}(G)) \not\leq \Phi(G)$, then there exists $M < \cdot G$, such that $M \not\geq O_{\pi}(\Phi_{\pi}(G))$, $G = M O_{\pi}(\Phi_{\pi}(G))$. Therefore $|G:M| = |O_{\pi}(\Phi_{\pi}(G)): O_{\pi}(\Phi_{\pi}(G)) M|$ is a π -number. So $M \geq \Phi_{\pi}(G) \geq O_{\pi}(\Phi_{\pi}(G))$, a contradiction to choose of M.

Theorem 1 1) $\Psi_{\pi}(G) = \Phi(G)O_{\pi} \leq \Phi_{\pi}(G)$.

2) If $\Phi_{\pi}(G)$ satisfies condition C_{π} , that is, the π -Hall subgroups of $\Phi_{\pi}(G)$ exists and are conjugate in $\Phi_{\pi}(G)$. Then

$$\Phi_{\pi}(G) = \Psi_{\pi}(G) = \Phi(G)_{\pi} \times O_{\pi}(G).$$

Proof 1) Follows from Lemma 1, 2) and Lemma 2 1).

2) Suppose $\Phi_{\pi}(G)$ satisfies C_{π} . Let K be a π -Hall subgroup of $\Phi_{\pi}(G)$. Then $G = N_G$ $(K) \Phi_{\pi}(G)$ by Frattini argument If $N_G(K) < G$, then there exists $M < \cdot G$, such that $N_G(K) \le M$, $G = M \Phi_{\pi}(G)$,

$$|G:M| = |\Phi_{\pi}(G):M \Phi_{\pi}(G)|$$

Since M contains K and M $\Phi_{\pi}(G)$, M contains a π -Hall subgroup of $\Phi_{\pi}(G)$, $|\Phi_{\pi}(G):M|$ $\Phi_{\pi}(G)$ is a π -number So $M \ge \Phi_{\pi}(G)$, G = M, a contradiction Hence $K \le G$, $K \le O_{\pi}(G)$. A gain from Lemma 2, 1), we have $K = O_{\pi}(G)$. By Lemma 1, 3), $\Phi_{\pi}(G/O_{\pi}(G)) = \Phi_{\pi}(G)/O_{\pi}(G)$ is a π -group, by Lemma 2, 2),

$$\Phi_{\pi}(G/O_{\pi}(G)) = \Phi(G/O_{\pi}(G))_{\pi} \ge \left(\frac{\Phi(G)O_{\pi}(G)}{O_{\pi}(G)} = \frac{\Phi(G)O_{\pi}(G)}{O_{\pi}(G)},\right)$$

which implies $\Phi_{\pi}(G) \ge \Phi(G) \pi O \pi(G)$. By Lemma 1, 2) and Lemma 2, 1), $\Phi_{\pi}(G) = \Phi(G) O \pi(G)$. The Theorem 1 follows

Corollary 1 1) If $\Phi_{\pi}(G)$ satisfies C_{π} , then $\Phi_{\pi}(G)/O_{\pi}(G) = \Phi(G/O_{\pi}(G))$.

2)
$$\Phi_p(G) = \Phi(G)O_p(G) = \Phi(G)_p \times O_p(G)$$
 and is nilpotent

Proof Since the (p) -Hall subgroup of $\Phi_p(G)$ is a p-Sylow subgroup, $\Phi_p(G)$ satisfies C_{P}

Theorem 1 and its corallary are a kind of extension and accuratization of Theorem 3 3 7 in [1] and Theorem 4 1, 4 2 in [2, Appedix c, §4]. By [3], $\Phi_{p}(G)$ and $\Phi_{(p,q)}(G)$ are solvable, and $\Phi_{p}(G)$ is an extension of a p-group by a nilpotent group.

 $\Phi_2(S_5) = A_5$ implies that condition C_{π} cannot be dropped. But it is worth to discuss if C_{π} can be weaken as E_{π} , that is the π -Hall subgroup of $\Phi_{\pi}(G)$ exists

 $\Phi_2(S_5) = \Phi_{[3,5]}(S_5)$ implies $\Phi_{[p,q]}(G)$ may not be solvable. So result about $\Phi_{[p,q]}(G)$ in [3] is incorrect

Frattini subgroup $\Phi(G)$ in the theory of locally defined formation has a most important property.

Suppose \mathbf{F} is a locally defined formation, then " $G/\Phi(G)$ \mathbf{F} if and only if G \mathbf{F} ". If $\mathbf{F} = \mathbf{N}$ (formation of nilpotent groups), Gasch üz extended above property:

Let D, M be normal subgroups of G, $D \triangleleft M$, $D \leq \Phi(G)$. If M $D \setminus \mathbb{N}$, then $M \setminus \mathbb{N}$, ([4, III, Theorem 5]).

Janko extended Gasch ütz Theorem as

Let $H \triangleleft \triangleleft G$. If $H / H = \Phi(G) = \mathbb{N}$, then $H = \mathbb{N} ([1, p423, Cor 3 3 17])$.

This result is also be extended in [1] as:

Let \mathbf{F} be p-closed group formation. If $H \triangleleft \triangleleft G$, $H/H \triangleleft \Phi_P(G)$ \mathbf{F} , then H \mathbf{F} ([1,p422, Th 3 3 16]).

Here we shall unify above results and extend them to local formation

Let \mathbf{F}_{π} be π -solvable π -locally defined formation. For any $f(p) = \{f(p)\}\$ be defined formation, $f(p) = \emptyset$, and so $\mathbf{F}_{\pi} \supset \mathbf{N}$.

Theorem 2 Suppose $H \triangleleft \triangleleft G$, $H / H = \Psi_{\pi}(G)$ \mathbf{F}_{π} , then $H = \mathbf{F}_{\pi}$

We need the following Lemmas for proving this Theorem.

Lemma 3 Suppose $H \triangleleft G$, $K \triangleleft H$ such that K satisfies property G, G is closed for product of normal subgroups. Then G contains a normal G-subgroup L, $L \geq K$.

Proof Since $K^x \triangleleft H$, $\forall x G$, $L = x GK^x$ as desired

Surely, in this Lemma condition " $H \triangleleft G$ " can be changed into " $H \triangleleft \triangleleft G$ ".

 π -group, π -solvable group, p-closed group, p-nilpotent group and so on are closed for product of normal subgroups

Lemma 4 Let G = MN, M N = 1, N an abelian normal p-subgroup of G, if G has a normal p-solvable subgroup L, such that $L \ge N$, L N. Then any compliment of N is conjugate to M.

Proof A ssum $e N_1$ is a min mal no mal p-subgroup of G, such that $N \ge N_1$, $N_1 = N$. Set $\overline{G} = G/N_1$, $\overline{M} = MN_1/N_1$, $\overline{N} = N/N_1$.

Hence $\overline{G} = \overline{MN}$, $\overline{N} < \overline{L} \triangleleft \overline{G}$. Using induction on \overline{G} , we have the compliment of \overline{N} is conjugate to \overline{M} .

If $N > N_{\perp}$, then the comp liment of N_{\parallel} is conjugate to M_{\parallel} by induction on MN_{\parallel} . Hence we may assume N_{\parallel} is the minimal normal subgroup of G. It is easy to show $M < \cdot G$. Put $M_{\parallel}G =$

 $_{x}$ $_{G}M^{x}$. A gain set $\overline{G} = G/M_{G}$, $\overline{M} = M/M_{G}$, $\overline{L} = LM_{G}/M_{G}$, $\overline{N} = NM_{G}/M_{G}$. Hence $\overline{M} < \cdot \overline{G}$, $\overline{M} = 1$, $O(\overline{G}) = \overline{N}$. If $O_P(\overline{G}) > \overline{N}$, then $D = O_P(\overline{G})$ $\overline{M} \triangleleft \overline{M}$. But \overline{N} is a p-group and $N_{\overline{N}}(D)$ > D. Therefore $N_{N}(D) > \overline{M}$, $N_{\overline{G}}(D) = \overline{G}$, a contradiction to $M_{\overline{G}} = 1$. Since $\overline{N} < \overline{L} \triangleleft \overline{G}$, $\overline{M} = 1$ $=\overline{L}$ \overline{M} , which is a normal p-solvable subgroup of \overline{M} . We have proved $O_P(\overline{M}) = 1$ early, which implies $O_p(\overline{H}) = 1$, $O_p(\overline{H})$ 1. Hence $O_p(\overline{M})$ 1. By [5, p. 276, Th. 11, 14] the comp liments of \overline{N} in G are conjugate which leads to the comp liments of N in G are conjugate This is the end of the proof

Remark The condition of the Theorem in [5] is $O_q(M)$ 1. But it can be changed into $O_{p}(M)$ 1 by using Schur-Zassenhaus Theorem instead of Sylow Theorems, the Theorem still holds by the same proof.

Lemma 5 Let G = HA, $A \triangleleft G$, A an abelian group. If $HA = \mathbf{F} \pi$, then $H = \mathbf{F} \pi$

Proof (Induction on |G|) A ssum $e H \leq G$, H = G, $H \leq M < G$. Set D = M A. Then $D \triangleleft G$ $M \cdot A = G$

If D = 1, then $H = A \le M = A = 1$. Hence H = A = 1, which implies H = H/HHA/A \mathbf{F}_{π}

If D 1, let N be a minimal normal subgroup of G, such that $N \le D$. U sing induction on \overline{G} , where $\overline{G} = G/N = M/N \cdot A/N$, we have $M/N = \mathbb{F}_{\pi}$ Since the minimal normal subgroup of M contained in N is normal in M and A, it is also normal in G. Hence N is a minim al norm al subgroup of M. Suppose $p \mid W \mid$, then N is the p-principal factor of G and M. Therefore $G/C_G(N)$ f(p), $C_G(N) = C_{MA}(N) = C_M(N)A$. So

$$\frac{G}{C_G(N)} = \frac{MA}{C_M(N)A} \cong \frac{M}{M} \quad \frac{M}{C_M(N)A} = \frac{M}{C_M(N)(M-A)}.$$

Since $C_M(N) \ge M$ A, $G/C_G(N) \cong \frac{M}{C_M(N)}$ f(p).

Now we come to M/N \mathbf{F}_{π} , which leads to M \mathbf{F}_{π}

Because M = M HA = H (M A), M \mathbb{F}_{π} , M $A \triangleleft M$, we have H \mathbb{F}_{π} by induction onM.

Proof of Theorem 2 (Induction on |G|) A ssum e^{N} is a min in all normal subgroup of G. Put $\overline{G} = G/N$, $\overline{H} = HN/N$. It is obvious that $\overline{H} \triangleleft \triangleleft \overline{G}$. By $\Psi_{\pi}(\overline{G}) = \Phi(\overline{G})O_{\pi}(\overline{G}) \ge \Phi(G)O_{\pi}(G)$ $N / N = \Psi_{\pi}(G) N / N$, we know $\overline{H} = \Psi_{\pi}(\overline{G}) \ge H N / N = [H = \Psi_{\pi}(G)] N / N$. Moreover

$$\frac{H}{H} \quad \Psi_{\pi}(G) \sim \frac{H}{(H} \quad \Psi_{\pi}(G))N \cong \frac{H / N}{(H} \quad \Psi_{\pi}(G))N / N \sim \frac{H}{H} \quad \Psi_{\pi}(\overline{G}) \qquad \mathbf{F}^{\pi}$$

Then $\overline{H} = HN /N \cong H /H N$ \mathbb{F}_{π} by induction

If G has another minimal normal subgroup N_1, N_2 , then $N_3 = 1$, $H/H = N_1$ \mathbf{F}_{π} Hence H/H N N = H \mathbf{F}_{π}

Now we may suppose that G has unique minimal normal subgroup N, and $N \leq \Psi_{\pi}(G)$. If N is a π -group, then H \mathbf{F}_{π} Therefore $N \leq \Phi(G)$, N is an elementary abelian p-group, $p = \pi \text{ By } H / H = N = \mathbf{F} \pi$, H is π -solvable

Now we use induction on the length of composition series of G.

If
$$H = G$$
, then $H = \mathbb{F}_{\pi}$ by $N \leq \Phi(G)$, $H / N = G / N = \mathbb{F}_{\pi}$

1) If HN > H, it is obvious that $HN \triangleleft \triangleleft G$, and the length of composition series from HN to G is smaller than that of H ([6, P. 133, La 8 6 1]).

By HN $\Psi_{\pi}(G) = [H \quad \Psi_{\pi}(G)]N$, we have

$$\frac{H}{H} \quad \frac{H}{\Psi_{\pi}(G)} \sim \frac{HN}{[H} \quad \frac{HN}{\Psi_{\pi}(G)) \]N} = \frac{HN}{HN} \quad \Psi_{\pi}(G) \quad \mathbf{F}^{\pi}$$

Then HN \mathbf{F}_{π} by induction, which implies H \mathbf{F}_{π} by Lemma 5.

2) If HN = H, then $N \le H$, $H = \Psi_{\pi}(G) = N$.

A ssum $e H \triangleleft \triangleleft H_1 \triangleleft G$. If $\Psi_{\pi}(H_1) = 1$, then $N \leq \Psi_{\pi}(H_1)$ by $\Psi_{\pi}(H_1) \triangleleft G$ and uniqueness of N. So $N \leq H = \Psi_{\pi}(H_1) \leq H = \Psi_{\pi}(G) = N$.

Since the length of composition series from H to H_{\perp} is smaller than that from H to G, H \mathbb{F}_{π} by induction

If $\Psi_{\pi}(H_{\perp}) = 1$, then $\Psi_{\pi}(H_{\perp}) = 1$. By [4, III, § 4, Le 4 4], N has compliments in H and H_{\perp} respectively, H = MN, $H_{\perp} = M \cdot N$. Since H is π -solvable, H_{\perp} has a normal π -solvable subgroup K, $K \ge H$ by Lemma 3. By Lemma 4, the compliment of N in H_{\perp} is conjugate to M_{\perp} . By Frattini argument, $G = N \cdot G(M_{\perp})N = N \cdot G(M_{\perp})$, which implies $M_{\perp} \triangleleft H_{\perp}$, $H_{\perp} = M_{\perp} \times N$. Hence $H = M \times N$. But $M \cong M \times N / N = H / N$ \mathbb{F}_{π} , N \mathbb{F}_{π} Therefore H \mathbb{F}_{π} Till now, we have proved the Theorem 2

References

- [1] Marian Deaconescu, Frattini-Like subgroups of Finite Groups, Math. Rept. Vol. 2, Part 4, Harwood Acad. Publ. GmbH, Great Britain, 1985.
- [2] Michael Weinstein, Between Nilpotent and Solvable, Polygonal Publ House, USA, 1982
- [3] Mukherjee, On the intersection of a class of max in al of finite groups, J. Pure Appl Alg, 42: 2(1986), 117-124
- [4] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin Heidelberg New York, 1967.
- [5] John S Rose, A Course on Group Theory, Camb. Univ. Press, London, New York, Melbouren, 1978
- [6] Jr. Marshall Hall, The Theory of Groups, Macmillan Company, New York, 1959.

π-Frattini **子群与 π-局部群系** 陈 重 穆

(西南师范大学数学系, 重庆 400715)

摘要

文中, 对 π -Frattini 子群给出了更精细的结果, 并将 Gasch üz 幂零性定理推广到 π -局部定义群系 主要结果是: 设 G 为有限群, H 为 G 的次正规子群 若 H /H $\Phi(G)O_{\pi}(G)$ \mathbb{F} , 则 H \mathbb{F}_{π} , 其中 \mathbb{F}_{π} 是 π -可解 π -局部定义群系