A Localization of D irac's Theorem for Hamiltonian Graphs

M ao L inf an

(The First Company of China State Construction Building Corporation Second Engineering Bureau, Beijing 100023)

Abstract New sufficient conditions for Hamiltonian graphs are obtained in this paper, which generalize Fan's theorem and Bedrossian et al's result^[1].

Keywords Hamiltonian graph, subgraphs pair, maximal cycle, induced subgraph

Classification AM S (1991) 05C99/CCL O 157. 5

1 Term in ologies and Notations

Let G be a simple graph Its vertex set is denoted by V(G) and edge set by E(G). For $\forall S \subset V(G)$, the induced subgraph by S in G is denoted by S G We use $G_1 \rightarrow G$ to denote that G_1 is an induced subgraph of G, and use C(G), W(G) to denote the closure to G and the component number of G, respectively.

For given graph H and integer k, the vertex set $D_k(S)$ is defined as

$$D_k(S) = \{x \mid d_G(x) \ge k, x \mid S \text{ and } S \subset V(G), S \subseteq H \}$$

We use $D_k(H)$ denoting the vertex set $D_k(S)$ with minimum elements

If $K \subset V(G)$, $L \subset V(G)$, the notation $N_K(L)$ denote the set of vertices in K which are adjacent to some vertices in L. The claw and modified claw are denoted by $K_{1,3}$, Z_1 , respectively.

The end-sum graph $sP \oplus G$ is defined as follow s:

Definition 1 1 For any distinct $x_1, x_2, ..., x_s \ V(G)$ and $y_1, y_2, ..., y_s \ V(G)$ $(x_i \ y_i)$, and $P_1, P_2, ..., P_s$ are paths with length ≥ 3 and $End(P_i) = \{u_i, v_i\}$, the end-sum graph $sP \oplus G$ is defined as

$$V(sP \oplus G) = \int_{i=1}^{s} V(P_{i}) \qquad V(G) \bigvee_{j=1}^{s} End(P_{i}).$$

$$E(sP \oplus G) = \int_{i=1}^{s} E(P_{i}) \qquad E(G) \qquad \{x_{i}u, y_{i}v \mid u_{i}u = E(P_{i}) \text{ and } v_{i}v = E(P_{i}),$$

$$1 \leq i \leq s\} \bigvee \{u_{i}u, v_{i}v \mid u_{i}u = E(P_{i}), v_{i}v = E(P_{i}), 1 \leq i \leq s\}.$$

^{*} Received August 29, 1994.

A direct description of the end-sum graph is shown in Fig 1.

Fig. 1

It is obvious that the connectivity of $sP \oplus G$ is 2

2 Main Results

Choosing C as the max in all cycle containing all the vertices of degree $\geq n/2$ in the closure graph C(G), we get

Lemma 2 1 Let G be a 2-connected non-ham iltonian graph w ith order $n \ge 3$, and $H_1, H_2, ..., H_s$ be the components of C(G) C. If $D_{n/2}(K_{1,3}) \ge 2$ and one of the following condition is satisfied

- i) $D_{n/2}(Z_1) \ge 2;$
- ii) if $Z_1 \rightarrow G$, $xy \in (\overline{Z_1})$, then $\max \{d_G(x), d_G(y)\} \geq n/2$

Then for $\forall i, 1 \leq i \leq s, N_c(H_i) = 2$ and $N_{H_i}(C) = 2$

The main result of this paper is the following theorem.

Theorem Let G be a 2-connected graph w ith order $n \ge 3$ If $|D_{n/2}(K_{1,3})| \ge 2$ and one of the following conditions is satisfied

- $i) \quad D_{n/2}(Z_1) \geq 2;$
- ii) if $Z_1 \rightarrow G$, $xy \in (Z_1)$, then $\max\{d_G(x), d_G(y)\} \ge n/2$

Then G is ham iltonian unless $C(G) = sP \oplus H$, where C is a maximal cycle containing all the vertices of degree $\geq n/2$, H = V(C) g and $s = w(C(G) \setminus C)$, and $\forall x_k \mid V(P_i) \mid V(C)$, $x_k u_k \mid E(P_i)$, $1 \leq i \leq s$, $\{x_k^-, x_k, x_k^+, u_k\}$ $G \cong K_{1,3}$

Corollary 2 1 Let G be a 2-connected graph w ith order $n \ge 3$. If $|D_{n/2}(K_{1,3})| \ge 2$ and $|D_{n/2}(K_{1,3})| \ge 2$ and the edge-connectivity $K_1(G) \ge 3$, then G is ham iltonian.

Corollary 2 $2^{[1]}$ Let G be a 2-connected graph of order $n \ge 3$. If for each pair of nonadjacent x, y in an induced claw of G or induced modified claw of G, $\max\{d_G(x), d_G(y)\} \ge n/2$, then G is ham iltonian.

Corollary 2 $3^{[2]}$ Let G be a 2-connected graph with order $n \ge 3$ If $|D_{n/2}(K_{1,3})| \ge 3$ and $|D_{n/2}(Z_1)| \ge 2$, then G is ham iltonian.

Note that the closure of the graphs considered in our theorem, not liking that in the Corollary 2 2 and 2 3, are not all $K_{1,3}$ -free Here we also present two conjectures

Conjecture 2.1 Let G be a 3-connected graph with order $n \ge 3$ If $D_{n/2}(K_{1,3}) \ge 2$ and

 $D_{n/2}(Z_1) \ge 1$, then G is ham iltonian.

Conjecture 2 2 Let G be a 1-tough graph with order $n \ge 3$ If $|D_{n/2}(K_{1,3})| \ge 2$ and $|D_{n/2}(Z_1)| \ge 1$, then G is ham iltonian.

References

- [1] F. Bedrossian, G. Chen and R. H. Schelp, A generalization of Fan's condition for ham iltonicity, pancyclicity and ham iltonian connectedness, Discrete Math., 115 (1993), 39-50
- [2] Mao Linfan, Ham iltonian graphs with constraints on the vertices degree in a subgraphs pair, J. Taiyuan Institute Machinery, Vol 15, Supp (July 1994), 79-90

Dirac 定理的局部化与 Hamilton 图

毛 林 繁

(中国建筑二局第一工程公司, 北京 100023)

摘要

设 $_G$ 为一个 $_n$ 阶 2-连通图, $_n \ge 3$ 若 $_{D_{n/2}(K_{1,3})} \ge 2$ 且满足下述条件之一:

- i) $D_{n/2}(K_{1,3}+e) \geq 2$,
- ii) 若 $K_{1,3}+e \rightarrow G$, $xy \in E(K_{1,3}+e)$, 则 $\max\{d_G(x),d_G(y)\} \ge n/2$,

则 G 是一个 H am ilton ian 图或其闭包为 $SP \oplus H$,这里 $SP \oplus H$ 是一类极小 2-边连通图