Note on the Paper" Representation of Set Valued Operators"

Wang Xiaomin
(Dept. of Math., Hebei University, Baoding 071002)
Xue Xiaoping
(Dept. of Math., Harbin Institute of Technology, 150001)

Abstract

The aim of this paper is to show that one main theorem in [1] is not correct by a counterexample and to give its correction.

Key words set valued operator, support function, measurability.
Classification AMS(1991) 28A45,46G10/ CCL O177.2

Integral representation theory turns out to be the appropriate analytical tool in several applied fields like optimization, optimal control, mathematical economics, and has been studied by many authors for various functions and operators (see Papageorgiou ${ }^{[1]}$, Diestel and Uhl ${ }^{[2]}$, etc). Among these, the representation of set valued operators was investigated by Papageorgiou in [1]. One of main theorems is (Theorem 4.1 in [1]) :
Theorem A If $\Phi:[0, T] \rightarrow P_{f} c(X)$ is measurable and for all $x^{*} \in X^{*}$ and $t_{0}, t_{1} \in[0, T]$ we have

$$
\left|\sigma_{\Phi}\left(t_{1}\right)\left(x^{*}\right)-\sigma_{\Phi}\left(t_{0}\right)\left(x^{*}\right)\right| \leq\left\|x^{*}\right\| \cdot\left|t_{1}-t_{0}\right|,
$$

then there exists $F:[0, T] \rightarrow P_{f} c(X)$ scalarly integrable s. t.

$$
\Phi\left(t_{1}\right)=\Phi\left(t_{0}\right)+c l \int_{t_{0}}^{t_{1}} F(t) d t, \text { for all } t_{0}, t_{1} \in[0, T] .
$$

The following example shows that the above Theorem A does not hold. Recall, first, some definitions and symbols. Let (Ω, Σ, μ) be a complete finite measure space and X a separable reflexive Ba^{-} nach space with dual space X^{*}.

Let

$$
\sigma_{A}\left(x^{*}\right)=\sup _{x \in A}\left\langle x^{*}, x\right\rangle,
$$

[^0]the support function of A, and
$$
P_{f}(c)=\{A \subset X: \text { nonempty, closed (convex) }\}
$$

Let us give the example:
Example Let $X=R, \Phi(t)=[t, T]$. It is easy to see that $\Phi(t)$ is measurable and closed convex valued. For $f \in X^{*}=R$, we have

$$
99 \quad \sigma_{\Phi}(t)(f)=\left\{\begin{array}{c}
T f, f \geq 0, \\
\text { ha } t f, f<0
\end{array}\right.
$$

Therefore, for all $f \in X^{*}$, we have

$$
\left|\sigma_{\Phi}\left(t_{0}\right)(f)-\sigma_{\Phi}\left(t_{1}\right)(f)\right| \leq\left|t_{1}-t_{0}\right||f|
$$

that is, $\Phi(t)$ satisfies the whole conditions of Theorem A. But for all $t_{1}>t_{0}, t_{1}, t_{0} \in[0, T]$, there is no set $A \subset R$ such that

$$
\Phi\left(t_{1}\right)=\Phi\left(t_{0}\right)+A
$$

it follows that the conclusion of Theorem A is not correct.
We give the following Theorem B as the correction of Theorem A.
Theorem B If $\Phi:[0, T] \rightarrow P_{f} c(X)$ is measurable and satisfies:
i) for all $t_{1}>t_{0}, t_{1}, t_{0} \in[0, T]$, there exists $\mathrm{A} \subset \mathrm{X}$ such that $\Phi\left(\mathrm{t}_{1}\right)=\Phi\left(\mathrm{t}_{0}\right)+\mathrm{A}$,
ii) for all x * $\in \mathrm{X}^{*}$ and $\mathrm{t}_{0}, \mathrm{t}_{1} \in[0, \mathrm{~T}]$ we have

$$
\left|\sigma_{\Phi}\left(t_{1}\right)\left(x^{*}\right)-\sigma_{\Phi}\left(t_{0}\right)\left(x^{*}\right)\right| \leq\left\|x^{*}\right\| \cdot\left|t_{1}-t_{0}\right|
$$

then there exists $F:[0, T] \rightarrow P_{f c}(X)$ scalarly integrable s. t.

$$
\Phi\left(t_{1}\right)=\Phi\left(t_{0}\right)+c l \int_{t_{0}}^{t_{1}} F(t) d t, \text { for all } t_{0}, t_{1} \in[0, T] .
$$

Proof In the proof of Theorem A in [1], the author infers that $x^{*}-\varphi\left(x^{*}, t\right)$ is sublinear for $t \in$ $[0, T] \backslash N_{x}{ }^{*}$, where $\lambda\left(N_{x}{ }^{*}\right)=0$, from $m_{x}{ }^{*}(A)=\int_{A} \varphi\left(x^{*}, t\right) d t$. But it does not hold. Now if Φ satisfies the condition i), we can conclude that $x^{*}-\varphi\left(x^{*}, t\right)$ is sublinear for $t \in[0, T] \backslash N_{x}{ }^{*}$, where $\boldsymbol{\lambda}\left(N_{x}{ }^{*}\right)=0$. By a lifting argument as in the proof of Theorem 3.1 in [1], we can get that x^{*} $-\varphi\left(x^{*}, t\right)=\rho\left[\varphi\left(x^{*}, t\right)\right]$ is sublinear for all $t \in[0, T]$. Also it is continuous. So applying Hor mander' s theorem we can find $F: \Omega \rightarrow P_{f c}(X)$ s.t. $\varphi\left(x^{*}, t\right)=\sigma_{F}(t)\left(x^{*}\right)$. So $F(\cdot)$ is scalarly integrable. Hence we have

$$
\begin{gathered}
\sigma_{\Phi\left(t_{1}\right)}\left(x^{*}\right)=\sigma_{\Phi\left(t_{0}\right)}\left(x^{*}\right)+\int_{t_{0}}^{t_{1}} \sigma_{F}(t)\left(x^{*}\right) d t \\
\sigma_{\Phi\left(t_{1}\right)}\left(x^{*}\right)=\sigma_{\Phi\left(t_{0}\right)}\left(x^{*}\right)+\boldsymbol{\sigma}_{t_{0}}^{1_{1} F(t) d t}\left(X^{*}\right) .
\end{gathered}
$$

Since this is true for all $x^{*} \in X^{*}$ ，we conclude that

$$
\Phi\left(t_{1}\right)=\Phi\left(t_{0}\right)+c l \int_{t_{0}}^{t_{1}} F(t) d t, \text { for all } t_{0}, t_{1} \in[0, T]
$$

The above differentiation result for multifunctions extends the single valued result of Gelfand and the earlier multivalued results of Artstein ${ }^{[3]}$ and Hermes ${ }^{[4]}$ ．

References

［1］N．S．Papageorgiou，Representation of set valued operators，Trans．Amer．Math．Soc．， 292 （1985），557－572．
［2］J．Diestel and J．J．Uhl，Vector measures，Math．Surveys，Vol．15，Amer．Math．Soc．，Provi－ dence，R．I．， 1977.
［3］Artstein，On the calculus of closed，set valued functions，Indiana Univ．Math．J．，24（1975）， 7－12．
［4］H．Hermes，Calculus of set valued functions and control，J．Math．Mech．，18（1968），47－60．

关于 集值算子的表示＂一文的注记

王 晓 敏
（河北大学数学系，保定 071002）
薛小平
（哈尔滨工业大学数学系，150001）

摘 要

本文通过一个反例说明 $[1]$ 中一个主要定理是错误的，并给出其修正结果．

[^0]: * Received October 15, 1995. Supported by N. S. F. of Hebei Province.

