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A Priori Estimatesfor a Quasilinear Hliptic PDE ~

Yang Zuodong
(Dept. of Math. , Henan Norma Univerdty , Xinxiang 453002)

Abstract  In the recent past many results have been established on positive lutions to boundary va ue prob-
lemsof theform

- div(] Du(x) | " 2%Du(x)) =Af(u(x)} in} Q,
u(x) =0on &,

whereA >0, Q isa bounded smooth domain and f (s) = 0for s= 0. In thispgper we study a priori egti-
mates of postive radia olutionsof suchproblemswhen N> p>1, Q=B;={x R";| x| <1} and f
(0, ) n C°([0, w)), f(0) =0.
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1. Introduction

In this paper , we condder the st of postive radiad solution to the following quaslinear dliptic
PDE

div(] Du|®2Du) +A f(u) =0inQ, (1.1)
u=0on &, (1.2
where Q denotes the unit bal in RY(N > p) , andA >0. Here f :[0, ) R satidies
(O =0, (v 20lmtd =150 (1.3)
o f(u)
Iulrg o Lo (1.4

for ome qwith p- 1<qg<((p-1) N+p)/(N- p). For N=pwehave p- 1<g< oo,

Problems (1. 1) - (1.2) arises from many branches of mathematics and gpplied mathematics.
The existence and uniquenessof the postive solutionsof (1.1) - (1.2) have been studied by many au
thors. See, for example, [1- 12] and the references therein.
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A naturd question which then arisesis to determine howA and d = maxo u are rdated. When p=2,

the rdated resuits have been obtained by [13]. In thispaper, we will prove the following theorem.
Theorem 1 If uisa®lutionof (1.1) , (1.2) with d =maxa u, and f satifies (1.3) and (1.4) ,
then for smalA we have

(p—f"—l)p'l(N - 1) sMgﬁﬂl < c,

where Cisacongtant that isindgpendent of A and d.
Assuming now that (1.1) , (1.2) has a posdtive radiad olution, let us denote it as W . Letting

A =maxq W , wethen dfine W = \/ & . Then W satifies

div(] Dv| P ?Dv) + dp)}l)\f(d\v) =0inQ, (1.5)
v =00n Q, (1.6)
0<v<e<1linQ (1.7)

with the aid of theorem 1, we will a0 prove the following theorem.

Theorem 2
quence) limy oW = v and v is a pasitive solution of

div(] Dv]|P?Dv) + L;v® =0inQ,

v=0o0n&,

whereLy=limn _Af(A)/ & .

Theorem 3 Assume that f satisfies (1.3) and (1.4). LetA, -0 and u, be postive radia slutions

of (1.1) - (1.2) forA =\ ,suchthat d= Il uyll » 0 as n —o. Then (LA )Y@ P* Yy, —w,

C' Q) asn -, where W, isa postive radia slution of the problem
- div(]Dw | P %Dw) =w%inQ w =00n 4Q.

2. Preiminaries
We cond der postive solution of (1.1) , (1.2) are radia solutions, thus, u=u(r A) satid

@,(u1)) + =T, (1) +A1 (W) =0, (
u(0) = d, U0 =0, u(l) =0, U(r) <0for0< r < 1. (

Multiplying (2.1) by u andintegratingon (0,1) gives
1
(p- D/l @I+ (N-D/r] | Pdr =AF(a),
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If W\ satisfies (1.1), (1.2) and f satisfies (1.3) and (1.4) then (for some subse-

in

ies
2.1)

2.2)

(2.3)



where F(u) = [ ¢'f (s) ds.
Another ussful identity isobtained by multiplying (2.1) by ¥ 'andintegratingon (0, r). This
gives

- N (u) :)\IOSN'lf(u(s))ds. (2.4)
Now udng the fact that f isincreasng, uisdecreaing and u= 0, we obtain
ur > (A_f_(l:lu.)_[)]_/(p.l). (25)

3. Proof of Theorem

We first recall a Pohozaev identity which was obtained by Ni and Serrinf®!.
Lemma 3.1 Let u(r) beasolutionof (2.1) in (ry, rp) C(0, ©) and let a be an arbitrary con-
stant. Then, foreachr (ri,rz) we have

adr[r”{(l- Vp| ulP+ F(u +-?uu| U1P%3] = M YnF(u - alf (u) + (a+2D - n/p| U|"].

Proof of Theorem 1 The left hand Sde of the inequality mentioned in theorem 1 above is now estab-
lished with identity (2.3). First, uing Holder sinequality we have

d = u(0) - u(d) :I;- U ds :J‘l'_pu"%dr < -(I‘z( u) P rdr)llp('p_?l)(p'l)’p.

0 vr
Usng (2.3) we now obtain

d° < (-D'Tl) p-j‘ .('_U'_)_pdr < (_p-?l) p-lLF_(_d)_

1
0 r (N-D°

Findly, snce f' 2 0 we have
d d
F(d) =Iof(s)ds= df (d) -J’Osf'(s) ds < df (d).

Therefore,

((p- D/ p) " YN- 1 sm(jpﬂl. (3.1)

Thus, the l&ft hand sde of the inequdity in theorem is eastablished.
To obtain the other haf of theorem 1, we begin with inequdlity (2.5)
d > ()\_f_%u.)_[)l/(p-l).

Next , usng (1.3) and (1.4) we see that there existsa C >0 such that
q
TR ()\_f_(l:lu.)_[)l/(p-l) > (_Q\T\lr_l.l_)l/(p-l).
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Dividing by u” ¢*~? and integrating thisinequality we obtain

1 1 U(p-1) .p/(p-1)
4@ P+DI(p-D " (- p+1/ (p- D 2 Q r -

Therefore,

Uy (a- p+D7 (p-D) 1
) ST+ VoD g@ e (D) oD (3.2)

We will now estimate| u' (1)/ d| from above and below. Thiswill inturnlead to an upper bound
forAd? Pt Af(d)/ d” *for smalA (and thuslarge d by (3.1)).
First , we estimate | u (1)/ d| from above. From (2.4) and (1.3) and (1.4) we have

1 1
| u (D |™?t= )\IOSN'lf (u) ds < @IOSN'luqu.
Usng (3.2) , weobtain

”I (]) 1
| =5 17 s ad” p+TosN'l(u/ d) “dr

} ! N tdr
< @d p+j.ol + CA\d™ p+l)q/(q» p+D) pd/ (g- p+1) -
L etting
s= Ad"PHYer
ds = (A d¥ P Yedr,
we obtain
' o pHL U p )
Rt L s pgl)(N.p),rj':\d ) ch;f;ﬁfﬁ (3.3)
Now we estimate | U (1)/ d| from below.
We reture to (2.1) , (2.2)
@, (1)) + M=, () +Ar(w) =0, 0< <1,
u(0) = d>0, U@ =0, u() =0, u(r) <0.
We define
E(r) = (p- 1/ pl u|°(r) +AF(u(n)
and
H(r) = rE(r) + (N - p)/ pud (r) | u |"?2
By Lemma 3.1, weobtainon (ro, r1) ater alengthy computation
N TH(r) - Y T H (o) :I”x NINE(W - (N - p)/ puf (u)]dr. (3. 4)
To
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Let tobesuchthat d> u(r) = kdforal 0< r< toand u(to) = kd for (”,\I'—pp)”(qﬂ) <k<l.
Then from (2.4) we have
(- u)"t= ri,‘—_lj(:s“'lf(u) ds
and hence
A (kd)r < N(- u)”" <Af(d)r
on [0, to]. Integratingon [0, to] gives

_d”t u _d~t v
AGt(a)) " 0= Qi)

where C1=[(p/ (p- 1)) P *(1- k)" 'N]YP>0. Substituting ro=0and r; = toin (3.4) and us

) (3.5

ing (3.5) gives
YH(to) zﬂ“)\ ™M Y(NF(u) - (N - p)/ puf(u)) dr

zI;“ArN'l(NF(kd) - (N - p)/ pdf (d)) dr

N
2N[NF(ka) - (N - p)/ pdf ()]

c p-1
__NJ‘[NF(kd) - (N - p)/pdf(d)](;d(T))N’P)\—fﬂ. (3.6)
Snce f satifies (1.3) and (1.4) , we then have that there exists A = 0 such that
NF(u) - (N - p)/ puf(u) = - A
for dl u. Thus, we have by (1.3) , (1.4) , (3.4) and (3.6)
CN
(p-D/pl U 1P = HD) 2~ APVPINF(kd) - (N - p)/ pf(d) d](f(d))”’P
- A (1- tB‘)/ N > & (p- N)lpd[N(p-l)+p- a(N-p 1/ p _ A
> A (p- N)/ pd[N(p- 1) +p-q(N-p I/ P
Therefore,
LuP@) C
a° 2 (\ g% Py (N-p/p (3.7
Hence, combining (3.3) and (3.7) gives
C
(}\dq p+l)(N p)/p —l u (1)/d| P
a- p+1, U p R
< C ( O\d ) _SEdS_) p/(p—l) (3 8)
=\ g PrYy (N- P/ (p- D) IO 1+ s (a- p+D : :
Now welet T=@Ad?" P*Y) Y P and by rewriting (3.8) we see that we have
- - T N-l -
cTN- /(D o 9’0 —S—d5—1+ o @) " (3.9)
— 377 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



We want to show now that T isbounded asA —0. We need to consider separately the cases N > p and
N = p.
Caxl N>p

Suppose now that T -0 asA -0. We will show that isimpossble. Firg , if the term on the right
is bounded then we are done (thisisthe caeif q< (p- 1) N/ (N - p)).

Assuming, therefore , that is term gpesto irfinity ash -0 we divide both sdesby TN P and get

T
[‘ SN 1gy (1 + Cqu/(q- p+1))
0< ct< ¢t

T(N- p/p ) P
We will now show that if T — o asA -0 then the right hand sde of the above goes to zero and thus
contradicts the above inequdity. Applying L' Hopital' s rule we obtain

T
SN_ldS/ (1 + Cqu/(Q- p+1))
0< clc (ITim-'O

T(N- p)/ P ) P
™Y (1 + cTP¥ (e prD)
m
T Lo (N _ p)/ pT(N>Zp)/P

[(p-D N+pl/p
—p T
(N _ p) p(llm o1 + Cqu/(q p+1))

p .
(N - p) p(lTITO

1
—~

1 p
T (- DN+plip , oplalN- P~ (p-DN-pl/ p(a prD)

As T oo thisgoesto zerofor p- 1< qg<[(p-1) N+ p]/(N- p) and N > p. Hence we obtain
the desred contradiction.
Caz Il N=P

For N = p, we canonly conclude from (3.3) ad (3.7) (snce A/ d® -0 asA -0) that

O<Cl<| (qol_'_cspo/(q p+1)1/(pl)
_S_ds_ 1 (p-1)
where ¢, ¢; are independent of A . We now define
_ A

0\ - d .
Assuming that T — o asA -0 we conclude from (3.2) that

W =0 (3.10)
uniformly say for 1/2< r< 1.

Claim W, VA, (@,(vA))' are uniformly bounded on [1/2,1].

Once the cdlaim is proven , we can then conclude that there is a subsequence with W —v and vA
-V uniformly on [1/2,1]. From (3.10) , we have that v=00on [1/2,1]. On the other hand, we
have that

O<as<| VA< e
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Therefore, V' (1) =limn oVA (1) £ - ¢1<0. Thus, v>0o0n (1-€ ,1). Thiscontradictsthat v=0

on[1/2,1]. Thus, weonly need to prove the claim.
Proof of Claim Recaling (2.4) and (3.2) gives

r r
NI- v)Pl= }\_J' Nl (u)dr € ad™ p+lrN".‘I'Osp'lqus

d” Yo
r p-1
g- p+1 N- S ds
<Ad r TO 1+ C(\ d% P*L) 9 (- p+D) oo (a- pri) -
L etting
t = O\dq- p+1)l/ ps,
dt = O\ d% Py Yegs,
gives
L A d®PHY P p-1 w p-1
p- q- p+ —tdt —_tmcdt
(- rv) <Ad ]’ 1+ Ctpq/(q- p+1) SIO 1+ Ctpq/(q- p+l) ~ B < =

Thus, for r [1/2,1] we have
| V| < B,
where B isindependent of A . From the differentia equation we have

N-1 1 A
] | V[P +dp_1f(vd).

| @p(V))' | =

Usng (3.2) again gives
| (@p(V))' | < BYH(N-D/r+ Qvid® P

A dY p+1
C(7\ qe p+1) o (q- p+1) Py (g- p+1)

1
()\ de p+1) (p-1/(g- p+1) Py (g- p+1) s

IN

B (N - 1)/r+

B (N - 1)/r+

IN

Cc

on [1/2,1] because by assumptionA d® P*' o asA - 0. Thus
vl V|.,] @, (V))<= C

and this completes the proof of the claim.
Proof of Theorem 2 From (2.4) we have that
N-1 p-1 A "N
M- V)Pt = dp_lfos f (W d) ds.
From theoerm 1, we have thatAf (d)/ d° < C. Thus, snce f' (u) = 0 we have that
N
N-1._ p-1 Ir
(- V) < CN.
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Hence,

f p-1
< C.

r
Substituting back into (2.1) we further obtain

S_N;_ll\/)\lp-1+)\_f_(_d.)_<

| @p(VA))' | tsc

2 combining the above and recaling that 0< W < 1 we obtain that
Wl VAL (@(V)) | < C
Thus, by the Arzela- Asoli theorem , there is a subsequence of theA (il denotedA ) such that

Po(VA) —w=>vA L@t () = v uniformly,
W :J'lr VA (s) ds — ;(p LHw) ds = v uniformly.

For some further subsequence (again denotedA ) , we have

)!IT))\_E'E_C})- = L; < o0,
Snce W - v uniformlyon [0,1] , we a0 have that v(0) =1 and v(1) =0. Now, snce L; < o« we
have by (3.8) that - v (1) =lim\ _oVA (1) =c¢>0. Thus, for adl @ >0 there existsd >0 such that
W >€ for0< r< 1-90. Returning to

(- VA) Pl = A—lj'rrN'lf(\)\d) dr,

N taP Yo
forO<r< 1-& <1, thisconverges to

r

L
(- V)Pt = _NLlJ’ rN-1vadr.
r 0
Thus, v isa lution of

@p(v) + T, (v) + vt = 0

on0<r< 1-0. Thisholdsfordald >0. Now as® - 0ad®d -0, thus visaolutionon0< r<

1. Further, v>0o0n [0,1]. Thiscompletesthe proof of Theorem 2.

Proof of Theorem3 Let up=1Il uyll » u,. Then, v,(r) satidies I vyl « =1 and
SNV PR ) = AN up ) TP A up W) I ug ] in (0,1)

vV a(0) =0, vh() =0.
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We shall show that the limit of {A , Il u, I & P*!} isanon- zero number as n - . Infact, we shall

P*1 ,0as n -, thenletA ,

sethatA Il u, Il & P**/0asn - . Onthecontary,if A, Il u, Il &
Il u, Il & P*t= T and T, ~0as n . Thus,
- div(] DV | P 2Dvy) = TalfC0 unll o vo)/ I un ll 7.
This and the regularity of - div(| D| " ?D) impliesthat v, ~0as n -, snce{f (Il uyll w vy) /
I uy I &} is uniformly bounded. Thiscontradictsthefact that I v, I = co =1for al n. By proof of
theorm 1, Thisabounded. Let zo= (Lo To) ¥ 9" P*Y v oand T=lim, .o Tn. Then, the arguments
above imply that z, — zin C*(Q) and z= (Lo T)¥ 9 P*Yy. Here v satifies
STV P RY) = LorMtViin (0,1)

v (0) =0, v(1) =0.

Hence, z satidies the problem
(N2 P 22) = M 2%in(0,0)

and

Z(0 =0, z(1) =0.
Thisimplies that

(LAY @ PPy, L zinQ.

This completes the proof of thistheorem.
4. The N =1 Cas

For N =1, equations (1.1) , (1.2) become
@p(u)) +Af(u) =0in0< r <1,
u(0) =0, u(d) =0, U = A.
Note that u must be symmetric about r =1/ 2. We therefore denote u(1/2) = d = maxq u. Multiply-
ing by u andintegratingon (O, r) gives
e I R O

where F(u) = [ ¢f(s) ds. Thus, at r=1/2 weobtain
p/ (p- DAF(d) = AP,
Thus,
| VP =p/(p- DA[F(d) - F(u)].
Therefore, integratingon (0,1/2) , we have

p
1/2 U dr

=12 .
IO YF(d) - F(u) p-1
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Letting s= u(r) , then ds=u (r) dr, gives

P

d
_ds
=1/2 .
.[0 JE(d) - F(9) p-1

d P P
J’O mﬂd)_ F(g 85 =12 /mp_l :

Letting t =s/ d gives dt = ds/ d and, hence

1 P P
Jo dea ~ Fam ®=Y2 [T e

Thus, to show that A f (d)/ d” 'is bounded , we only need to consider the Ieft hand side of the above
equation. Usng (1.3) it is straightforward to see that

Thus,

iy —L(d)d _g+1
a0 F(d) - F(td) 1. (b

Thus, we would like to such that

) 1P e 1 dt
iy JFCa - Fa @ Y Y

In order to do this, we will break the integrd into two pieces and show that each isfinite. For0< t

< 1/ 2 we have

. v2 P ) " f(d)d
e, Jrce - Fao @ =TT By - Fwza)

3}

“*lig +

2P+q+1_ L
For1/2< t< 1wehave F(d) - F(td) =f(c) (1- t) d, where td< c< d. Snce f isincreasng
we have f (c) = f(td). Thus,

1 P ror
"SR e R - ) =TT L, e (- o d
p 1
] _ [(g-1) p+1]
- [f(d) ¢* _dt _ .
= "T%‘p f(d/2)_[1/2 1t Prp- 12 .

Thus, by the dominated convergence theorem we have

. P _ . 1 P _ P 1

The proof of Theorem 2 for the case N =1 is amilar to the proof for N > p decribed earlier.
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- div(] Du|P?Du) =Af(u} Q
ulo =0
A >0,Q s> 0, f(s) =2 0.

N> p>1,Q=B:={x R",|x/ <1} f %0, o) n C([0, o)),
f(0) =0,
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