On the Equivalences of Matrix Norms Related to the lp Norms

B ai Zhongzhi

(State Key L aboratory of Scientific/Engineering Computing Institute of Computational M athematics and Scientific/Engineering Computing Chinese A cademy of Sciences, Beijing 100080)

Abstract This note established equivalence relations among the matrix norms related to the l_p norm and the l_p operator norm for $1 \le p \le 1$, which completes the comparison results in [1, 2].

Keywords l_p no m, l_p operator no m, m ixed no m, equivalence

Classification AM S (1991) 65H 10, 65W 05/CCL O 241. 6

1 Introduction

For a positive number $1 \le p \le a$ and a complex matrix $A = (a_{ij})$ $C_{n \times n}$, we denote by $A |_{p} = \left(\sum_{i=1}^{n} |a_{ij}|^{p} \right)^{\frac{1}{p}}$

the l_p norm of the matrix A, and by $\|A\|_p = \max\{ |A|x|_p : x \in C^n, |x|_p = 1 \}$ the l_p operator norm of the matrix A, where $\|x\|_p = \left(\sum_{i=1}^n |x_i|^p \right)^{\frac{1}{p}}$ with $x = (x_1, x_2, \dots, x_n)^T$ (T denoting the transpose). For these two norms, Tasci^[2] proved the following comparison result, which is a conjecture of Goldberg and Newman^[1]:

Theorem 1 Let p satisfy $1 \le p \le$. Then for all A $C_{n \times n}$ it holds that

$$|A|_p \leq n^{\frac{1}{p}} |A|_p,$$

where the inequality is sharp.

^{*} Received January 8, 1996 Project 19601036 supported by the National Natural Science Foundation of China

Tasci also confirmed that this theorem naturally leads to a simple comparison of the l_{pq} norm, defined as

$$A \mid_{pq} = \left[\sum_{i=1}^{n} \left(\sum_{i=1}^{n} |a_{ij}|^{p} \right)^{\frac{q}{p}} \right]^{\frac{1}{q}},$$

and the l_q operator norm.

Theorem 2 Let p, q satisfy $1 \le p$, $q \le .$ Then for all $A = C_{n \times n}$ it holds that

$$A \mid_{pq} \leq \sigma_{pq}(n) \mid A \mid_{q},$$

w here

The main purpose of this note is to establish the reverse relations of the inequalities in Theorem 1 and Theorem 2, so that the comparisons of l_P norms, l_P operator norms as well as the mixed norms are completed, and to generalize these results so that the relations between the l_P and l_Q norms as well as between the l_P and l_Q operator norms can be established

2 The main results

The main results of this note are Theorem 3 and Theorem 4 given below. In their proofs, we will use the known inequality

$$|x|_p \le \lambda_{pq}(n) |x|_q, \qquad \lambda_{pq}(n) = \begin{cases} 1, & \text{for } p \ge q \\ \frac{1}{n^{\frac{1}{p}} \cdot \frac{1}{q}}, & \text{for } p \le q \end{cases}, \qquad 1 \le p, q \le q$$

o r

$$|x|_q \le \lambda_{qp}(n) |x|_p, \qquad \lambda_{qp}(n) = \begin{cases} 1, & \text{for } q \ge p \\ \frac{1}{n^{\frac{1}{q}} - \frac{1}{p}}, & \text{for } q \le p \end{cases}, \qquad 1 \le p, q \le .$$

Note that $\sigma_{pq}(n) = n^{\frac{1}{q}} \lambda_{pq}(n) = n^{\frac{1}{p}} \lambda_{qp}(n) = \sigma_{qp}(n)$ hold for all $1 \leq p, q \leq \dots$

Theorem 3 Let p satisfy $1 \le p \le$. Then for all A $C_{n \times n}$ it holds that

$$\|A\|_p \leq \beta_p(n) \|A\|_p$$

w here

$$\beta_p(n) = \begin{cases} 1, & \text{for } p \leq 2\\ n^{1-\frac{2}{p}}, & \text{for } p \geq 2 \end{cases}$$

Proof Because of $1 \le p \le 1$, we see that there exists a unique positive number $q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Noticing that $\beta_{\mathbb{P}}(n) = \lambda_{\mathbb{P}}(n)$ holds at this time Considering the Hölder's in-

equality, we can get for any $x C^n$, $x = \sum_{i=1}^n x_i e_i$ that

$$|A x|_{p} = \left| \sum_{i=1}^{n} x A e_{i} \right|_{p} \leq \sum_{i=1}^{n} |x_{i}| |A e_{i}|_{p} \leq \left(\sum_{i=1}^{n} |x_{i}|^{q} \right)^{\frac{1}{q}} \left(\sum_{i=1}^{n} |A e_{i}|_{p}^{p} \right)^{\frac{1}{p}}$$

$$= |x|_{q} \left(\sum_{i=1}^{n} |a_{ij}|^{p} \right)^{\frac{1}{p}} = |A|_{p} |x|_{q} \leq \beta_{p} (n) |A|_{p} |x|_{p},$$

where e_1, e_2, \ldots, e_n are the standard basis of C^n . Therefore, the conclusion of Theorem 3 is

Theorem 3 naturally results in the following result which describes the relation between the operator norm and the mixed norm.

Theorem 4 Let p, q satisfy $1 \le p$, $q \le .$ Then for all A $C_{n \times n}$ it holds that

$$A \mid_{pq} \geq \frac{n^{\frac{1}{p}}}{\beta_q(n) \, \sigma_{pq}(n)} \mid_A \mid_{pq}$$

Proof We first note that $|x|_q \le \lambda_{p,q}(n) |x|_p$ and $|A|_q = |A|_{qq} = |A|_{qq}$

$$\begin{vmatrix} A & |_{pq} = & | (|_{A} e_{1} |_{p}, |_{A} e_{2} |_{p}, \dots, |_{A} e_{n} |_{p}) |_{q} \ge \frac{1}{\lambda_{qp}(n)} | (|_{A} e_{1} |_{q}, |_{A} e_{2} |_{q}, \dots, |_{A} e_{n} |_{q}) |_{q} \\
= & \frac{1}{\lambda_{qp}(n)} |_{A} |_{q} \ge \frac{1}{\lambda_{qp}(n) \beta_{q}(n)} |_{A} |_{q},$$

we immediately know that the conclusion of Theorem 4 is correct

Based on the above theorem s, we can easily get the following corollaries

Corollary 1 Let p satisfy $1 \le p \le$. Then for all A $C_{n \times n}$ it holds that

$$\frac{1}{\beta_{p}(n)} \|A\|_{p} \leq \|A\|_{p} \leq n^{\frac{1}{p}} \|A\|_{p}.$$

w here the inequalities are sharp.

Corollary 2 Let p, q satisfy $1 \le p$, $q \le .$ Then f or all A $C_{n \times n}$ it holds that

$$\frac{n^{\frac{1}{p}}}{\beta_{r}(n) \, \sigma_{rq}(n)} \, \|A\|_{q} \leq \, |A|_{pq} \leq \, \sigma_{pq}(n) \, \|A\|_{p}$$

3 Further generalizations

In this section, we will set up the comparison relations among l_p and l_q norms, l_p and l_q operator norms as well as the mixed norms. For this purpose, we first prove the following

theo rem.

Theorem 5 Let p, q satisfy $1 \le p$, $q \le 1$. Then for all $q \in \mathbb{R}^{\frac{1}{p} \cdot \frac{1}{q}}$ $\mathcal{C}_{n \times n}$ it holds that $\frac{n^{\frac{1}{p} \cdot \frac{1}{q}}}{\sigma_{pq}(n)} |A|_q \le |A|_p \le \frac{n^{\frac{1}{q}}}{\beta_p(n) \sigma_{pq}(n)} |A|_q$

Proof We first verify the left-hand inequality. From the proof of the Theorem in [2] we can get $|A|_q \le n^{\frac{1}{q}} \max_{1 \le i, j \le n} |A|_q$. Considering again $|x|_q \le \lambda_{ip}(n) |x|_p (\forall x \in C^n)$ we have

$$|A| |_{q} \leq n^{\frac{1}{q}} \lambda_{qp}(n) \max_{1 \leq i, j \leq n} |A| e_{j} |_{p} \leq n^{\frac{1}{q} - \frac{1}{p}} \sigma_{pq}(n) \max_{|x|_{p} = 1} |A| x |_{p} = n^{\frac{1}{q} - \frac{1}{p}} \sigma_{pq}(n) ||A| ||_{p},$$

that is, the left-hand inequality of this theorem holds

Now, we turn to the right-hand inequality. From the proof of Theorem 4 and considering the inequality $|x|_p \le \lambda_{pq}(n) |x|_q (\forall x \quad C^n)$, we can get $|A|_p \le \lambda_{pq}(n) |A|_q$. This inequality combining with Theorem 3 immediately gives the inequality what we are testing

Corollary 3 Let p, q satisfy $1 \le p, q \le .$ Then for all $A \in C_{n \times n}$ it holds that

$$\frac{1}{\lambda_{pp}(n)} |A|_q \leq |A|_p \leq \lambda_{pq}(n) |A|_q$$

Theorem 5 with either Corollary 1 or Corollary 2 can result in the conclusions in the following corollary, respectively.

Corollary 4 Let p, q satisfy $1 \le p$, $q \le .$ Then f or all $A : C_{n \times n}$ it holds that

$$\frac{n^{\frac{1}{p} \cdot \frac{1}{q}}}{\beta_{q}(n) \sigma_{pq}(n)} \|A\|_{q} \leq \|A\|_{p} \leq \beta_{p}(n) \sigma_{pq}(n) \|A\|_{q}$$

$$\frac{n^{\frac{1}{q}}}{\beta_{q}(n) \sigma_{pq}(n)^{2}} \|A\|_{p} \leq \|A\|_{pq} \leq n^{-\frac{1}{p}} \beta_{q}(n) \sigma_{pq}(n)^{2} \|A\|_{p};$$

$$\frac{n^{\frac{1}{p} \cdot \frac{1}{q}}}{\beta_{q}(n) \sigma_{pq}(n)} \|A\|_{q} \leq \|A\|_{pq} \leq \beta_{q}(n) \sigma_{pq}(n) \|A\|_{q};$$

References

- 1 Goldberg M, et al Equivalence constants for l_p nomes of matrices L inear and Multilinear Algebra, 1987, 21: 173-179
- 2 TasciD. On the conjecture by Goldberg and Newman. Linear Algebra Appl., 1995, 215: 275-277