A Generalization of KKM Theorem *

Zhang Xian

(Dept. of Math., Jimei University, 361021)

In this paper we introduce the concepts of Z-space and Z-KKM mapping. generalize famous F-KKM theorem and other versions of KKM theorem.

Keywords KKM-theorem. Z-space. Z-KKM mapping.

Classification AMS(1991) 54D05.47H10/CCL O177.91

1. Introduction and Preliminaries

In 1961, Fan K. [11] generalized the KKM-theorem [10] to the infinite dimensional case. Since then many versions of F-KKM theorem were obtained [Refs. 2,3,4,6,9].

In section 1 we introduce the Z-space concept and, in section 2 we establish a general version of KKM-theorem, which is the unification and generalization of many versions of KKM-theorem, and obtain a new version of KKM-theorem: Theorem 2.5. In section 3 we discuss some spacial cases.

Throughout this paper N denotes the set of natural number. For each $n \in \mathbb{N}$, set $[n] = \{1, \ldots, n\}$. By F([n]) we denote the family of nonempty subsets of [n].

Let X be a nonempty set, for each $n \in \mathbb{N}$, set

$$\mathrm{F}_n(X) = \{A \subset X: \ A \ \mathrm{is \ a \ subset \ of} \ X \ \mathrm{with} \ n \ \mathrm{elements}\},$$
 $\mathrm{F}(X) = \bigcup_{1}^{\infty} \mathrm{F}_n(X).$

Let $A = \{x_1, \ldots, x_n\} \in F_n(X)$, for $I \in F([n])$, set $A_I = \{x_i : i \in I\}$. For $n \in \mathbb{N}$, we denote, by $\Delta^{(n-1)} = e_1 \cdots e_n$, the standard (n-1)-simplex. For $I \in \mathcal{F}([n]), \Delta_I^{(n-1)} = \operatorname{co}\{e_i : i \in I\}$ is a sub-simplex of $\Delta^{(n-1)}$.

Let X, Y be two topological spaces by C(X,Y) we denote the family of continuous mappings from X to Y.

Definition 1.1 Let X be a topological space and $\{F_{A.B}\}$ be the family of non-empty subsets of X, labeled by all $A \in F(X)$ and $B \in F(A)$. $(X, \{F_{A,B}\})$ is said a Z-space,

^{*}Received November 20, 1995.

if and only if for each $n \in \mathbb{N}$ and each $A = \{x_1, \ldots, x_n\} \in F_n(X)$, there exists a $f_A \in C(\Delta^{(n-1)}, X)$ such that

$$f_A(\Delta_I^{(n-1)}) \subset F_{A,A_I}, \quad \text{for all } I \in \mathrm{F}([n])$$
.

Remark 1.1 *H*-space $(X, \{\Gamma_A\})$ [see 1] is a special example of *Z*-space. In fact for each $A \in F(X)$, and each $B \in F(A)$, let $F_{A,B} = \Gamma_B$. Then for each $n \in \mathbb{N}$, and each $A = \{x_1, \ldots, x_n\} \in F_n(X)$, by [1], there exists a continuous mapping $f_A : \Delta^{(n-1)} \to X$, such that $f_A(\Delta_I^{(n-1)}) \subset \Gamma_{A_I}$, for all $I \in F([n])$. Therefore

$$f_A(\Delta_I^{(n-1)}) \subset \Gamma_{A_I} = F_{A,A_I} \quad ext{for all } I \in \mathrm{F}([n]).$$

Thus by [2] Hausdorff topological vector space, convex space [8], contractible space, and pseudo-convex space [2] are all the special cases of Z-space.

Let $(X, \{F_{A,B}\})$ be a Z-space. A subset $D \subset X$ is called Z-convex relative to subset $C \subset X$, If for each $B \in F(C)$ and each $A \in F(X)$ with $B \subset A$, it follows $F_{A,B} \subset D$. When C = D, then D is called Z-convex.

Let $(X, \{F_{A,B}\})$ be a Z space and D is a nonempty subset of X. Set

$$co(D) = \bigcap \{C : C \text{ is a } Z\text{-convex subset of } X \text{ and } D \subset C\},\$$

co(D) is called Z-convex hull of D. It is clear that co(D) is a Z-convex subset of X and $D \subset co(D)$.

Definition 1.2 Let W be a nonempty set, Y a topological space and $G: W \to 2^Y$ a set-valued mapping. If for any $n \in \mathbb{N}$ and any $E = \{w_1, \ldots, w_n\} \in F_n(W)$, there exist a Z-space $(X, \{F_{A,B}\})$, a set $A = \{x_1, \ldots, x_n\} \in F_n(X)$, and a $s \in C(X, Y)$ such that

$$s(F_{A,A_I}) \subset G(E_I)$$
 for all $I \in F([n])$, (1)

then G is called a Z-KKM mapping.

Remark 1.2 Definition 1.2 is the most general concept and it contains KKM mapping, H-KKM mapping [2], generalized KKM mapping [3, 4], and GH-KKM mapping [5] as its special cases.

Definition 1.3 Let X be a topological space, D a subset of X. D is said a compactly open (respectively compactly closed) subset of X, if, for any compact subset C of X, $D \cap C$ is a relatively open (respectively relatively closed) subset of C.

Obviously if D is a compactly open (compactly closed) subset of X, then $X \setminus D$ is a compactly closed (compactly open) subset of X. Also if f is a continuous mapping from topological space X to topological space Y and D is a compactly open (compactly closed) subset of Y, then $f^{-1}(D)$ is a compactly open (compactly closed) subset of X.

Lemma Let $(X, \{F_{A,B}\})$ be a Z-space, and M_1, \ldots, M_n be n compactly closed subsets of X such that $\bigcup_{i=1}^n M_i = X$. Then for any $A = \{x_1, \ldots, x_n\} \in F_n(X)$, there exists $I \in F([n])$ such that $F_{A,A_I} \cap (\bigcap_{i \in I} M_i) \neq \emptyset$.

Proof For $A = \{x_1, \ldots, x_n\} \in \mathcal{F}_n(X)$, by definition of Z-space, take a mapping $f_A \in \mathcal{C}(\Delta^{(n-1)}, X)$ such that $f_A(\Delta_I^{(n-1)}) \subset F_{A.A_I}$ for all $I \in \mathcal{F}([n])$. For $u \in \Delta^{(n-1)}$, set

$$I(u) = \{i \in [n] : f_A(u) \in M_i\} \in F([n]),$$

 $S(u) = \Delta_{I(u)}^{(n-1)}.$

We have $I(u) \neq \emptyset$, and then $S(u) \neq \emptyset$. By compactly closedness of M_i we can prove that $U = \Delta^{(n-1)} \setminus f_A^{-1}(\cup_{i \notin I(u)} M_i)$ is a open neighborhood of u in $\Delta^{(n-1)}$. If $u' \in U$, then $I(u') \subset I(u)$. So $S(u') \subset S(u)$. Therefore mapping $S: \Delta^{(n-1)} \to 2^{\Delta^{(n-1)}}$ is upper semicontinuous with nonempty compact convex value. From Kakutani's fixed point theorem there exists a $u_0 \in \Delta^{(n-1)}$ such that $u_0 \in S(u_0) = \Delta^{(n-1)}_{I(u_0)}$. From the definition of $I(u_0)$, $f_A(u_0) \in \cap_{i \in I(u_0)} M_i$. On the other hand, set $I = I(u_0)$, $f_A(u_0) \in f_A(\Delta^{(n-1)}_I) \subset F_{A,A_I}$. So

$$F_{A,A_I} \cap (\cap_{i \in I} M_i) \neq \emptyset$$
.

2. The main results

Theorem 2.1 Let X be a nonempty set, Y a topological space. Suppose that $G: W \to 2^Y$ is a Z-KKM mapping, and one of the following conditions is hold:

- (i) for each $w \in W$, G(w) is compactly open in Y.
- (ii) for each $w \in W$, G(w) is compactly closed in Y.

Then the family of $\{G(w): w \in W\}$ of sets has the finite intersection property. Moreover, if we add the following condition to condition (ii),

(*) there exists a $w_0 \in W$ such that $G(w_0)$ is a compact set then $\cap_{w \in W} G(w) \neq \emptyset$.

Proof (i) Suppose that for each $w \in W$, G(w) is compactly open.

By contradiction suppose that $\{G(w): w \in W\}$ has not the finite intersection property. Then there exist $n \in \mathbb{N}$ and $E = \{w_1, \dots, w_n\} \in F_n(W)$, such that

$$\bigcap_{i=1}^{n} G(w_i) = \emptyset. \tag{2}$$

Because G is a Z-KKM mapping, there exist Z-space $(X, \{F_{A.B}\})$, $A = \{x_1, \ldots, x_n\} \in F_n(X)$, and $s \in C(X, Y)$, such that

$$s(F_{A.A_I}) \subset G(E_I) \quad ext{for all } I \in \mathrm{F}([n]).$$

From (2) we have $\bigcap_{i=1}^n s^{-1}(G(w_i)) = \emptyset$. Let $H_i = X \setminus s^{-1}(G(w_i))$, i = 1, ..., n. Then H_i are compactly closed subset of X and $\bigcup_{i=1}^n H_i = X$. By Lemma there exists an $I' \in F([n])$, such that

$$F_{A,A_{I'}} \bigcap (\bigcap_{i \in I'} H_i) \neq \emptyset. \tag{3}$$

On the other hand since $s(F_{A,A_{I'}}) \subset G(E_{I'}), \ F_{A,A_{I'}} \cap (X \setminus s^{-1}(G(E_{I'}))) = \emptyset$, i.e.,

$$F_{A,A_{I'}}\bigcap(\bigcap_{i\in I'}H_i)=\emptyset.$$
(4)

This contradicts (3). Hence $\{G(w): w \in W\}$ has the finite intersection property.

(ii) Suppose that for each $w \in W$, G(w) is compactly closed.

For any $n \in \mathbb{N}$ and any $E = \{w_1, \ldots, w_n\} \in F_n(W)$, Because G is a Z-KKM mapping, there exist Z-space $(X, \{F_{A,B}\})$, $A = \{x_1, \ldots, x_n\} \in F_n(X)$, and $s \in C(X,Y)$, such that $s(F_{A,A_I}) \subset G(E_I)$ for all $I \in F([n])$. From the definition of Z-space there exists a $f_A \in C(\Delta^{(n-1)}, X)$ such that

$$f_A(\Delta_I^{(n-1)}) \subset F_{A,A_I} \quad ext{for all } I \in \mathrm{F}([n]),$$

so $s(f_A(\Delta_I^{(n-1)})) \subset G(E_I)$ for all $I \in \mathrm{F}([n])$, and

$$\Delta_I^{(n-1)} \subset f_A^{-1}(s^{-1}(G(E_I))) = \bigcup_{i \in I} f_A^{-1}(s^{-1}(G(w_i))) \quad ext{for all } I \in \mathrm{F}([n]).$$

Since $G(w_i)$ is compactly closed $f_A^{-1}(s^{-1}(G(w_i)))$ is closed in $\Delta^{(n-1)}$. By well-known KKM-theorem there exists a $\bar{u} \in \Delta^{(n-1)}$, such that $\bar{u} \in \cap_{i=1}^n f_A^{-1}(s^{-1}(G(w_i)))$, that is $s(f_A(\bar{u})) \in \cap_{i=1}^n G(w_i)$. Therefore $\{G(w) : w \in W\}$ has the finite intersection property. Moreover when $G(w_0)$ is compact, for each $w \in W$, $G(w) \cap G(w_0)$ is nonempty compact. Hence

$$\bigcap_{w \in W} G(w) = \bigcap_{w \in W} (G(w) \bigcap G(w_0)) \neq \emptyset.$$

Remark 2.1 Theorem 2.1 unifies and generalizes results those in [2-6, 8, 9].

Theorem 2.2 Let W be a nonempty set, Y a topological space. Suppose that $G: W \to 2^Y$ is a Z-KKM mapping. If

- (i) for each $w \in W$, G(w) is compactly closed in Y,
- (ii) there exists $W_0 \subset W$, such that $\cap_{w \in W_0} G(w)$ is compact,
- (iii) for any $E_0 \in F(W)$, there exists a nonempty compact subset Y_0 of Y such that for each $E = \{w_1, \ldots, w_n\} \in F(W_0 \cup E_0)$,

$$s(F_{A.A_I}) \subset Y_0$$
 for all $I \in F([n])$,

where $(X, \{F_{A,B}\})$, $A = \{x_1, \dots, x_n\}$ and $s: X \to Y$ as in Definition 1.2. Then $\bigcap_{w \in W} G(w) \neq \emptyset$.

Proof Given $E_0 \in F(W)$, from (iii) take nonempty compact $Y_0 \subset Y$. Define $\tilde{G}: W_0 \cup E_0 \to 2^Y$ by $\tilde{G}(w) = G(w) \cap Y_0$ for all $w \in W_0 \cup E_0$. For each $E = \{w_1, \ldots, w_n\} \in F_n(W_0 \cup E_0) \subset F_n(W)$, by assumption that G is a Z-KKM mapping and (iii) there exist a Z-space $(X, \{F_{A,B}\})$, $A = \{x_1, \ldots, x_n\} \in F_n(X)$ and $s \in C(X, Y)$ such that

$$s(F_{A,A_I}) \subset Y_0 \cap G(E_I) = \tilde{G}(E_I)$$
 for all $I \in F([n])$.

This shows that \tilde{G} is a Z-KKM mapping. From (i) and Y_0 is compact we have $\tilde{G}(w)$ is compact. By Theorem 2.1

$$\bigcap_{w \in W_{0} \cup E_{0}} \tilde{G}(w) \neq \emptyset. \tag{5}$$

Let $K = \bigcap_{w \in W_0} G(w)$, by (ii) K is compact. And, from (5),

$$igcap_{w \in E_0} (K \cap G(w)) \supset igcap_{w \in W_0 \cup E_0} G(w) \supset igcap_{w \in W_0 \cup E_0} \widetilde{G}(w)
eq \emptyset.$$

Thus we have proved that family $\{K \cap G(w) : w \in W\}$ has the finite intersection property. By (i) and (ii) $K \cap G(w)$ is compact. Therefore

$$\bigcap_{w\in W}G(w)=\bigcap_{w\in W}(K\cap G(w))\neq\emptyset.$$

Theorem 2.3 Let W be a nonempty set, Y a topological space. Suppose that $H: W \to Y$ satisfies

- (i) for each $w \in W$, H(w) is compactly open,
- (ii) there exists a $w_0 \in W$, $Y \setminus H(w_0)$ is compact,
- (iii) H(W) = Y.

Then there exist $n \in \mathbb{N}$ and $E = \{w_1, \ldots, w_n\} \in F_n(W)$ such that for any Z-space $(X, \{F_{A.B}\})$, any $A = \{x_1, \ldots, x_n\} \in F_n(X)$ and any $s \in C(X, Y)$, there exist $I \in F([n])$ and $x_0 \in F_{A.A_I}$ with $s(x_0) \in \cap_{w \in E_I} H(w)$.

Proof Suppose that the conclusion is false. Then for any $n \in \mathbb{N}$ and any $E = \{w_1, \ldots, w_n\} \in F_n(W)$, there exist Z-space $(X, \{F_{A.B}\})$, $A = \{x_1, \ldots, x_n\} \in F_n(X)$ and $s \in C(X, Y)$, such that

$$s(F_{A.A_I}) \bigcap (\bigcap_{w \in E_I} H(w)) = \emptyset \quad ext{for any } I \in \mathrm{F}([n]),$$

or

$$s(F_{A.A_I}) \subset \bigcup_{w \in E_I} (Y \setminus H(w))$$
 for any $I \in F([n])$. (6)

Define mapping $G: W \to Y$ by $G(w) = Y \setminus H(w)$, $w \in W$. From (6) G is a Z-KKM mapping. By (i) G(w) is compactly closed for any $w \in W$ and by (ii) $G(w_0)$ is compact. Follows Theorem 2.1

$$Y \setminus \bigcup_{w \in W} H(w) = \bigcap_{w \in W} G(w) \neq \emptyset.$$

This contradits (iii).

Theorem 2.4 Let Y be a topological space, W a nonempty set. Suppose that mapping $T:W\to 2^Y$ satisfies

- (i) for each $y \in Y$, $T(y) \neq \emptyset$,
- (ii) for each $w \in W$, $T^{-1}(w)$ is compactly open,
- (iii) there exists a $w_0 \in W$, such that $Y \setminus T^{-1}(w_0)$ is compact.

Then there exist $n \in \mathbb{N}$ and $E = \{w_1, \ldots, w_n\} \in F_n(W)$, such that for each Z-space $(X, \{F_{A.B}\})$, each $A = \{x_1, \ldots, x_n\} \in F_n(X)$ and each $s \in C(X, Y)$, there exist $I \in F([n])$ and $y \in Y$, such that $E_I \subset T(y)$ and $y \in S(F_{A.A_I})$.

Proof Suppose that the conclusion is false. Then for any $n \in \mathbb{N}$ and any $E = \{w_1, \ldots, w_n\} \in$

 $F_n(W)$, there exist Z-space $(X, \{F_{A,B}\})$, $A = \{x_1, \ldots, x_n\} \in F_n(x)$ and $s \in C(X,Y)$, such that for any $I \in F([n])$,

$$s(F_{A,A_I}) \bigcap (\bigcap_{w \in E_I} T^{-1}(w)) = \emptyset,$$

or

$$s(F_{A,A_I})\subset \bigcup_{w\in E_I}(Yackslash T^{-1}(w)).$$

Let $G: W \to 2^Y$ with $G(w) = Y \setminus T^{-1}(w)$. Then G is a Z-KKM mapping. By (ii) and (iii) G(w) is compactly closed and $G(w_0)$ is compact. It follows from Theorem 2.1 that $\bigcap_{w \in W} G(w) \neq \emptyset$. So there exists $y_0 \in Y$ such that

$$y_0 \in igcap_{w \in W} G(w) = Y ackslash igcup_{w \in W} T^{-1}(w).$$

Hence $y_0 \notin T^{-1}(W) = Y$, which is a contradiction.

Remark 2.2 In Theorem 2.4, if $Y = W = (X, \{F_{A,B}\})$ is a Z-space, and for each $x \in X$, T(x) is Z-convex. Then Theorem 2.4 implies that there sxist $A \in F_n(X)$, $I \in F([n])$ and $x_0 \in X$ such that $A_I \subset T(x_0)$ and $x_0 \in F_{A,A_I}$. Since $T(x_0)$ is Z-convex $x_0 \in F_{A,A_I} \subset T(x_0)$. That is x_0 is a fixed point of T. We extend the Browder's fixed point Theorem.

Theorem 2.5 Let $(X, \{F_{A,B}\})$ be a Z-space. Suppose that $G: X \to 2^X$ satisfies

- (i) for each $x \in X$, G(x) is compactly closed,
- (ii) for each $x \in X$, $x \in G(x)$,
- (iii) for each finite subset A of X, G(co(A)) = G(A),
- (iv) there exists a $x_0 \in X$, $G(x_0)$ is compact.

Then $\bigcap_{x\in X}G(x)\neq\emptyset$.

Proof Suppose that $\bigcap_{x \in X} G(x) = \emptyset$. Let $T: X \to 2^X$, for $x \in X$, $T(x) = X \setminus G^{-1}(x)$. For any $x \in X$, we have: (1). there exists a $u \in X$ such that $x \notin G(u)$. So $u \in X \setminus G^{-1}(x) = T(x)$, hence $T(x) \neq \emptyset$; (2). since

$$u \in T^{-1}(x) \Leftrightarrow x \in T(u) = X \backslash G^{-1}(u) \Leftrightarrow x \notin G^{-1}(u) \Leftrightarrow u \in X \backslash G(x)$$

by (i), $T^{-1}(x)$ is compactly open; (3). for any finite subset A of T(x),

$$A \subset X \backslash G^{-1}(x) \Leftrightarrow A \cap G^{-1}(x) = \emptyset$$

 $\Leftrightarrow x \notin G(A) = G(co(A)) \text{ (by (iii))}$
 $\Leftrightarrow co(A) \cap G^{-1}(x) = \emptyset \Leftrightarrow co(A) \subset X \backslash G^{-1}(x) = T(x).$

So T(x) is Z-convex. Finally since

$$x \in X \setminus T^{-1}(x_0) \Leftrightarrow x_0 \notin T(x) = X \setminus G^{-1}(x) \Leftrightarrow x_0 \in G^{-1}(x) \Leftrightarrow x \in G(x_0)$$

by (iv), $X \setminus T^{-1}(x_0)$ is compact. It follows from Theorem 2.4 and Remark 2.2, there exists $u \in T(u) = X \setminus G^{-1}(u)$. Hence $u \notin G(u)$, this contradicts (ii).

Remark 2.3 Theorem 2.5 is a new version of KKM-theorem.

3. Some spacial cases

Definition 3.1 Let X be a nonempty set, $(Y, \{F_{A.B}\})$ a Z-space and mapping $G: X \to 2^Y$. If for any $n \in \mathbb{N}$, any $E = \{x_1, \ldots, x_n\} \in F_n(X)$, there exists $A = \{y_1, \ldots, y_n\} \in F_n(Y)$ such that $F_{A.A_I} \subset G(E_I)$ for all $I \in F([n])$. Then G is said a Z1-KKM mapping.

Definition 3.2 Let $(X, \{F_{A.B}\})$ be a Z-space, Y a topological space and mapping $G: D(\subset X) \to 2^Y$. If for any $n \in \mathbb{N}$ and any $A = \{x_1, \ldots, x_n\} \in F_n(D)$, there exist $B = \{u_1, \ldots, u_n\} \in F_n(X)$ and $s \in C(X, Y)$ such that

$$s(F_{B,B_I}) \subset G(A_I)$$
 for all $I \in F([n])$.

Then G is said a Z2-KKM mapping.

From Theorem 2.1 one have the following two theorems immediately.

Theorem 3.1 Let X be a nonempty set, $(Y, \{F_{A.B}\})$ a Z-space. Suppose that $G: X \to 2^Y$ is a Z1-KKM mapping and for each $x \in X$, G(x) is a compactly open (compactly closed) subset of Y. Then the family $\{G(x): x \in X\}$ has the finite intersection property.

Theorem 3.2 Let $(X, \{F_{A.B}\})$ be a Z-space, Y a topological space. Suppose that $G: X \to 2^Y$ is a Z2-KKM mapping and for each $x \in X$, G(x) is a compactly open (compactly closed) subset of Y. Then the family $\{G(x): x \in X\}$ has the finite intersection property.

From Theorem 2.3 we have

Theorem 3.3 Let $(X, \{F_{A,B}\})$ be a Z-space, Y a topological space. Suppose that $H: D(\subset X) \to 2^Y$ satisfying

- (i) for any $x \in D$, H(x) is compactly open,
- (ii) H(D) = Y,
- (iii) there exists a $x_0 \in D$ with $Y \setminus H(x_0)$ is compact.

Then there exist $n \in \mathbb{N}$ and $B = \{u_1, \ldots, u_n\} \in F_n(D)$, such that for any $A = \{x_1, \ldots, x_n\} \in F_n(X)$ and any $s \in C(X,Y)$, there exist $I \in F([n])$ and $x_0 \in F_{A,A_I}$ such that $s(x_0) \in \bigcap_{x \in B_I} H(x)$.

Theorem 3.4 Let $(X, \{F_{A,B}\})$ be a Z-space, Y a topological space, E, F be nonempty subsets of $X \times Y$. Suppose

- (i) mapping $G: X \to 2^Y$, $G(x) = \{y \in Y: (x,y) \notin E\}$, is not Z2-KKM and
- (ii) for any $y \in Y$, $\{x \in X : (x,y) \in F\}$ is Z-convex relative to $\{x \in X : (x,y) \in E\}$. Then there exist $n \in \mathbb{N}$ and $A = \{x_1, \ldots, x_n\} \in F_n(X)$ such that for every $s \in C(X,Y)$ there exist $I \in F([n])$ and $x_0 \in F_{A,A_I}$ with $(x_0, s(x_0)) \in F$.

Proof From (i) there exist $n \in \mathbb{N}$ and $A = \{x_1, \dots, x_n\}$ such that for any $s \in C(X, Y)$, there exists $I \in F([n])$ such that $s(F_{A,A_I}) \not\subset G(A_I)$. So there exists a $x_0 \in F_{A,A_I}$ with $s(x_0) \notin G(x), \forall x \in A_I$, or $(x, s(x_0)) \in E, \forall x \in A_I$. So $A_I \subset \{x \in X : (x, s(x_0)) \in E\}$. By (ii)

$$F_{A.A_I} \subset \{x \in X : (x,s(x_0)) \in F\}.$$

Hence $(x_0, s(x_0)) \in F$.

Theorem 3.5 Let $(X, \{F_{A,B}\})$ be a Z-space, Y a topological space and E a nonempty subset of $X \times Y$. Suppose that

- (i) mapping $G: X \to 2^Y$, $G(x) = \{y \in Y: (x,y) \notin E\}$ is Z2-KKM, and
- (ii) for any $x \in X$, $\{y \in Y : (x,y) \in E\}$ is a compact oped subset of Y, and
- (iii) there exists a $x_0 \in X$, such that $\{y \in Y : (x_0, y) \notin E\}$ is compact. Then there exists a $y_0 \in Y$, such that $\{x \in X : (x, y_0) \in E\} = \emptyset$.

30 2 -) - - - - (- , 30) 2 -

Proof This result follows from Theorem 3.2.

References

- 1 Bardaro C and Ceppitelli R. Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities. J. Math. Anal. Appl., 1989, 137: 46~58
- 2 Bardaro C and Ceppitelli R. Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities. J. Math. Anal. Appl., 1988, 132: 484~490
- 3 Shih-sen Chang and Ying Zhang. Generalized KKM theorem and variational inequalities. J. Math. Anal. Appl., 1991, 159: 208~223
- 4 Shih-sen Chang and Yi-hai Ma. Generalized KKM theorem on H-space with applications. J. Math. Anal. Appl., 1992, 163: 406~421
- 5 Shih-sen Chang and Li Yang. Sedtion theorems on H-spaces with applications. J. Math. Anal. Appl., 1993, 178: 214~231
- 6 Horvath C. Some results on multivalued mappings and inequalities without convexity. in "Nonlinear and Convex Analysis,". Lecture Notes in Pure and Appl. Math., 1987, 107
- 7 Horvath C. Points fixes et coincidences pour les applications multivoques sans convexité. C. R. Acad. Sci. Paris, 1983, 296: 403~406
- 8 Lassonde M. On the use of KKM multifuncations in fixed point theory and related topics, J. Math. Anal. Appl., 1983, 97: 151~201
- 9 Park S. Generalizations of Ky Fan's matching theorem and their applications. J. Math. Anal. Appl., 1989, 141: 164~176
- 10 Knaster B. Kuratowski K and Mazurkiewicz S. Ein beweis des fixpunktsatzes für n-dimensionale simplexe. Fund. Math., 1929, 14: 132~137
- Fan K. A generalization of Tychonoff's fixed point theorem. Math. Ann., 1961, 266: 519~537

KKM 定理的一个推广

张宪

(集美大学师范学院数学系, 厦门 361021)

摘 要

本文引入了 Z- 空间概念, 定义了一类新的映射: Z-KKM 映射, 推广了著名的 FKKM 定理及其它各种形式的 KKM 定理.