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1. Introduction and Preliminaries

In 1961, Fan K.['!l generalized the KKM-theorem!!" to the infinite dimensional case.
Since then many versions of F-KKM theorem were obtained [Refs. 2,3,4,6,9].

In section 1 we introduce the Z-space concept and, in section 2 we establish a general
version of KKM-theorem, which is the unification and generalization of many versions of
KKM-theorem, and obtain a new version of KKM-theorem: Theorem 2.5. In section 3 we
discuss some spacial cases.

Throughout this paper N denotes the set of natural number. For each n € N, set
[n] = {1,...,n}. By F([n]) we denote the family of nonempty subsets of [n].

Let X be a nonempty set, for each n € N, set

F,.(X)={AC X: Aisasubset of X with n elements},

F(X) = DF"(X).

Let A = {z1,...,2,} € F.(X), for I € F([n]), set A = {z;:4 € I}.

For n € N, we denote, by A1) — ¢ ...¢,. the standard (n — 1)-simplex. For
I € F([n]), A(I"_l) = co{e; : i € I} is a sub-simplex of A=),

Let X, Y be two topological spaces by C(X,Y) we denote the family of continuous
mappings from X to Y.

Definition 1.1 Let X be a topological space and {F4 g} be the family of non-empty
subsets of X, labeled by all A € F(X) and B € F(A). (X,{FapB}) Is said a Z-space,
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if and only if for each n € N and each A = {z1,...,2n} € Fy(X), there exists a f4 €
C(A"=Y), X such that

Fa(AY) C Fag,, forall I € F([n]) .

Remark 1.1 H-space (X,{Ta}) [see 1] is a special example of Z-space. In fact for
each A € F(X), and each B € F(A), let F4p = I'p. Then for each n € N, and each
A = {z1,...,2,} € Fa(X), by [1], there exists a continuous mapping fa : A X
such that fA(A(I"_”) C T4, for all I € F([n]). Therefore

Fa(A Y C Ty, = Faa, for all I € F([n)).

Thus by [2] Hausdorff topological vector space, convex space [8], contractible space,
and pseudo-convex space [2] are all the special cases of Z-space.

Let (X,{Fa4p}) be a Z-space. A subset D C X is called Z-convex relative to subset
C C X, If for each B € F(C) and each A € F(X) with B C A, it folows F4 g C D. When
C = D, then D is called Z-convex.

Let (X,{Fap}) be a Z space and D is a nonempty subset of X. Set

co(D) = N{C : C is a Z-convex subset of X and D C C},

co(D) is called Z-convex hull of D. It is clear that co(D) is a Z-convex subset of X and
D C co(D).

Definition 1.2 Let W be a nonempty set, Y a topological space and G : W — 2¥ a
set-valued mapping. If for any n € N and any E = {w,...,w,} € F (W), there exist a
Z-space (X,{FaB}), aset A={z1,...,2n} € Fo(X), and a s € C(X,Y) such that

s(Fa,a,) C G(Er) for all I € F([n]), (1)

then G is called a Z-KKM mapping.

Remark 1.2 Definition 1.2 is the most general concept and it contains KKM mapping,
H-KKM mapping [2], generalized KKM mapping [3, 4], and GH-KKM mapping [5] as its

special cases.

Definition 1.3 Let X be a topological space, D a subset of X. D is said a compactly
open (respectively compactly closed) subset of X, if, for any compact subset C of X, DNC
is a relatively open (respectively relatively closed) subset of C'.

Obviously if D is a compactly open (compactly closed) subset of X, then X\D is a
compactly closed (compactly open) subset of X. Also if f is a continuous mapping from
topological space X to topological space Y and D is a compactly open (compactly closed)
subset of Y, then f~1(D) is a compactly open (compactly closed) subset of X. -

Lemma Let (X,{Fap}) be a Z-space, and M1, ..., M, be n compactly closed subsets of
X such that UM, M; = X. Then for any A = {21,...,2,} € F(X), there exists I € F([n])
such that Fy 4, N (mieIMi) # 0.
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Proof For A = {z;,...,2,} € F,(X), by definition of Z-space, take a mapping f4 €
C(A™ 1V X) such that fA(A(I"_l)) C Fy.a, for all I € F([n]). For u € A1) set

I(u) = {i € [n] : fa(u) € Mi} € F([n]),
S(u) = A,
We have I(u) # 0, and then S(u) # 0. By compactly closedness of M; we can prove
that U = A("‘”\f;l(uw(u)Mi) is a open neighborhood of u in A™~Y_ If v/ € U, then

I(v') C I(u). So S(v') C S(u). Therefore mapping S : A1) — 28”7 js ypper semi-
continuous with nonempty compact convex value. From Kakutani’s fixed point theorem
there exists a uy € A™™Y such that u, € S(uw) = A(IT(L;]I)) From the definition of I(uy),

fa(uo) € Nicruy)M;. On the other hand, set I = I(uy), fa(uo) € fA(A(In_l)) C Faa,. So
Faa, N (NierM;) # 0.

2. The main results

Theorem 2.1 Let X be a nonempty set, Y a topological space. Suppose that G : W — 2Y
is a Z-KKM mapping, and one of the following conditions is hold:

(i) for each w € W, G(w) is compactly open in Y.

(ii) for each w € W, G(w) is compactly closed in Y.
Then the family of {G(w) : w € W} of sets has the finite intersection property. Moreover,
if we add the following condition to condition (ii),

(*) there exists a wo € W such that G(wy) is a compact set then N,,cwG(w) # 0.

Proof (i) Suppose that for each w € W, G(w) is compactly open.
By contradiction suppose that {G(w) : w € W} has not the finite intersection property.
Then there exist n € N and E = {w,,...,w,} € F,(W), such that

M Glw) = 0. 2)
=1
Because G is a Z-KKM mapping, there exist Z-space (X,{Fag}), 4 = {z1,...,2.} €
F,.(X), and s € C(X,Y), such that
s(Fa.4,) C G(Er) for all I € F([n]).
From (2) we have N™_,s7*(G(w;)) = 0. Let H; = X\s7(G(w;)), i = 1,...,n. Then H;

are compactly closed subset of X and U], H; = X. By Lemma there exists an I’ € F([n]),

such that
Faa, ([ H:) #0. (3)

iel’
On the other hand since s(F4,4,,) C G(Er), Faa, N(X\s"{G(Ep))) =0, ie,

Faa, () Hi)=0. (4)

iel’
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This contradicts (3). Hence {G(w) : w € W} has the finite intersection property.

(ii) Suppose that for each w € W, G(w) is compactly closed.

For any n ¢ N and any E = {w;,...,w,} € F,(W), Because G is a Z-KKM mapping,.
there exist Z-space (X,{FapB}), A = {z:....,2,,} € F,.(X), and s £ C(X,Y), such
that s(Faa,) = G(Ey) for all I € F([n]). From the definition of Z-space there exists a
fa < C(A" ™Y X) such that

fa(AY Yy C Fuu, forall I € F([n]),
so s(fa(AY M) = G(E}) for all I € F([n]), and

«u 1 - fA (s UfA G(w;))) for all I & F([n]).

el

Since G(w;) is compactly closed f;'(s™'(G(w;))) is closed in A"~} By well-known
KKM-theorem there exists a @ € A"~Y) such that @ € N, f;'(s"1(G(w;))), that is
s(fa(u)) € N_;G(w;). Therefore {G(w) : w € W} has the finite intersection property.
Moreover when G(w) is compact, for each w € W, G(w) N G(wy) is nonempty compact.

Hence
) G(w) = () (Gw)[)G(wy)) # 0.

weW weW

Remark 2.1 Theorem 2.1 unifies and generalizes results those in [2-6, 8, 9].

Theorem 2.2 Let W be a nonempty set, Y a topological space. Suppose that G : W — 2¥
is a Z-KKM mapping. If
(i) for each w € W, G(w) is compactly closed in Y,
(i) there exists W, C W, such that N,,cw, G(w) is compact,
(iii) for any E, € F(W), there exists a nonempty compact subset Y, of Y such that
for each E = {wy,...,w,} € F(W, U E,),

s(Faa,)CYy forallle F([n]),

where (X, {Fap}),A={21,...,2,} and s : X — Y as in Definition 1.2.
Then N,,cw G(w) # 0. '

Proof Given E‘ € F(W), from (iii) take nonempty compact Y, C Y. Define G Vi, U
E, — 2¥ by G( ) = G(w) 'Y, for all w £ W, U E,. For each £ = {wy,...,w,} €
F.(Wyu Ey) C F (W), by assumption that G is a Z-KKM mapping and (iii) there exist
a Z-space (X,{FA.B} , A=A{z1,...,2,} € F.(X) and s € C(X,Y) such that

s(Faa,) C Yo[\G(Er) = G(E;) for all I € F([n]).

This shows that G is a Z-KKM mapping. From (i) and Y| is compact we have é(w) is
compact. By Theorem 2.1 ) :
N Glw)#0. (5)

weW, LB,
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Let K = Nyew,G(w), by (ii) K is compact. And, from (5),

N(EnGw)> [ Gw)> () Gw)#0.

weEy weWyuE, weW UE,

Thus we have proved that family {K N G(w) : w € W} has the finite intersection
property. By (i) and (ii)) K N G(w) is compact. Therefore

) Gw)= () (KnGw)) # 0.

weW weW

- Theorem 2.3 Let W be a nonempty set, Y a topological space. Supposethat H - W — Y
satisfies

(i) for each w € W, H(w) is compactly open,

(ii) there exists a wy € W, Y\ H(wy) is compact,

(i) HW)=Y.
Then there exist n € N and E = {wy,...,wn} € Fo (W) such that for any Z-space
(X,{Fa.B}), any A ={21,...,2.} € F,.(X) and any s € C(X,Y), there exist I € F([n])
and zy € Fy 4, with s(zy) € Nyeg, H(w).

Proof Suppose that the conclusion is false. Then for any n € N and any E = {wy,...,w,} €
F. (W), there exist Z-space (X,{FaB}), A = {21,...,2,} € F,(X) and s € C(X,Y),
such that

s(Faa)(Y () H(w)) =9 forany I € F([n]),
weE;

s(Faa)) C |J (W\H(w)) for any I € F([n)). (6)
wel;

Define mapping G : W — Y by G(w) = Y\H(w), w € W. From (6) G is a Z-KKM
mapping. By (i) G(w) is compactly closed for any w € W and by (ii) G(wy) is compact.

Follows Theorem 2.1
Y\ |J Hw)= [) G(w
weW weWw

This contradits (1i1).

Theorem 2.4 Let Y be a topological space, W a nonempty set. Suppose that mapping
T:W — 2¥ satisfies

(i) for eachy € ¥, T(y) 0,

(i) for each w € W, T~ !(w) is compactly open

(iii) there exists a wy € W, such that Y\T~*(wy) is compact.
Then there exist n € N and E = {wy,...,w,} € F, (W), such that for each Z-space
(X,{FaB}), each A = {zy,...,2,,} € F,,(X) and each s € C(X,Y), there exist I € F([n])
and y € Y, such that E; C T(y) and y € s(Fa 4,).

M

Proof Suppose that the conclusion is false. Then for any n € N and any E = {wy,...,w,}
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F,.(W), there exist Z-space (X,{Fa5}), A= {21,-..,2.} € Fa(z) and s € C(X,Y), such

that for any I € F([n]),
s(Faa) (N ) T7Hw)) =0,
weE;

or

s(Fa.a,) C U (Y\T—l(w))'

weE)

Let G : W — 2Y with G(w) = Y\T~}(w). Then G is a Z-KKM mapping. By (ii) and
(iii) G(w) is compactly closed and G{wg) is compact. It follows from Theorem 2.1 that
NwewG(w) # 0. So there exists yo € Y such that

| we [ Glw)=Y\ U T7Hw).

weWw weWw
Hence y ¢ T-Y(W) =Y, which is a contradiction.

Remark 2.2 In Theorem 2.4,iff Y = W = (X,{Fa}) is a Z-space, and for each z € X,
T(z) is Z-convex. Then Theorem 2.4 implies that there sxist A € Fo(X), I € F([n]) and
zy € X such that A7 C T(zy) and zy € F4.4,. Since T(zy) is Z-convex zy € Fy4, C
T(zy). That is z is a fixed point of T. We extend the Browder’s fixed point Theorem.

Theorem 2.5 Let (X,{Fap}) be a Z-space. Suppose that G: X — 2X satisfies
(i) for each ¢ € X, G(z) is compactly closed,
(ii) for each z € X, z € G(z),
(iii) for each finite subset A of X, G(co(A)) = G(4),
(iv) there exists a 2y € X, G(z¢) is compact.
Then N,exG(z) # 0.

Proof Suppose that NgexG(z) = 0. Let T: X — 2% forz € X, T(z) = X\G~'(z). For
any ¢ € X, we have: (1). there exists a u € X such that ¢ ¢ G(u). So u € X\G™}(z) =
T(z), hence T(z) # 0; (2). since

weT Y z) ez eT(u)= X\G ' (u) &z ¢ G (u) & ue X\G(2)
by (i), T~%(z) is compactly open; (3). for any finite subset A of T'(z),

ACX\G Y z)= AnNG Y (z)=10
& ¢ ¢ G(A) = G(co(4)) (by (ii1))
& co(A)NG~Hz) = 0 & co(4) C X\G(z) = T(z).

So T(z) is Z-convex. Finally since

z € X\T Hazo) & 20 ¢ T(z) = X\G}Hz) & 20 € G7'(z) & z € G(zy)
by (iv), X\T~(zo) is compact. It follows from Theorem 2.4 and Remark 2.2, there exists
u € T(u) = X\G}(u). Hence u ¢ G(u), this contradicts (ii).
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Remark 2.3 Theorem 2.5 is a new version of KKM-theorem.

3. Some spacial cases

Definition 3.1 Let X be a nonempty set, (Y,{Fa p}) a Z-space and mapping G : X —
2Y Iffor any n € N, any E = {z1,...,2,} € Fp(X), there exists A = {y1,...,yn} €
F,.(Y) such that Fp 4, C G(Ey) for all I € F([n]). Then G is said a Z1-KKM mapping.

Definition 3.2 Let (X,{Fap}) be a Z-space, Y a topological space and mapping G :
D(C X) — 2¥. Iffor any n € N and any A = {z;,...,2,} € Fo(D), there exist
B = {uy,...,u,} € F,(X) and s € C(X,Y) such that

s(Fp.p,) C G(Ar) for all I € F([n]).

Then G is said a Z2-KKM mapping.
From Theorem 2.1 one have the following two theorems immediately.

Theorem 3.1 Let X be a nonempty set, (Y,{Fap}) a Z-space. Suppose that G : X — 2Y
is a Z1-KKM mapping and for each z € X, G(z) is a compactly open (compactly closed)
subset of Y. Then the family {G(z) : ¢ € X} has the finite intersection property.

Theorem 3.2 Let (X,{FapB}) be a Z-space, Y a topological space. Suppose that
G : X — 2Y is a Z2-KKM mapping and for each z € X, G(z) is a compactly open
(compactly closed) subset of Y. Then the family {G(z) : « € X} has the finite intersection
property.

From Theorem 2.3 we have

Theorem 3.3 Let (X,{Fap}) be a Z-space, Y a topological space. Suppose that
H:D(C X) — 2Y satisfying

(i) for any ¢ € D, H(z) is compactly open,

(i) H(D)=Y,

(iii) there exists a zy € D with Y\ H (z,) is compact.
Then thereexistn € N and B = {uy,...,un} € F, (D), such that forany A = {2,,...,2,,} €
F,(X) and any s € C(X,Y), there exist I € F([n]) and zy € Fa.4, such that s(zy) €
ﬂmeBIH(:B).

Theorem 3.4 Let (X,{Fap}) be a Z-space, Y a topological space, E, F be nonempty
subsets of X x Y. Suppose

(i) mapping G: X —2Y,G(z)={y €Y :(z,y) ¢ E}, is not Z2-KKM and

(ii) foranyy €Y, {z € X : (z,y) € F} is Z-convex relative to {z € X : (z,y) € E}.
Then there exist n € N and A = {z1,...,2,} € F,(X) such that for every s € C(X,Y)
there exist I € F([n]) and ¢y € F4 4, with (zy, s(z0)) € F.

Proof From (i) there exist n € N and A = {21,...,2,} such that for any s € C(X,Y),
there exists I € F([n]) such that s(F4.4,) ¢ G(Ar). So there exists a g € Fy 4, with
s(zy) ¢ G(z),Vz € Aj, or (z,s(zy)) € E,Vz € A;. So A C {z € X : (z,s(x0)) € E}. By
(i)

Faa, C{z € X :(z,s(z0)) € F}.
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Hence (zy,s(zy)) € F.

Theorem 3.5 Let (X,{Fap}) be a Z-space, Y a topological space and E a nonempty
subset of X X Y. Suppose that

(i) mapping G: X —2Y, G(z)={y €Y :(z,y) ¢ E} is Z2-KKM, and

(ii) foranyz € X, {y €Y :(z,y) € E} is a compact oped subset of Y, and

(iii) there exists a zy € X, such that {y € Y : (zy,y) ¢ E} is compact.
Then there exists ay) € Y, such that {z € X : (z,y0) € EF} = 0.

Proof This result follows from Theorem 3.2.
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