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M inmal Surfaces in S° with Constant Kahler Angles
and Constant Curvature’
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Abstract: In the present paper, we first give some exanples of minimal surfaces in the
nearly Kahler gphere S°w ith constant Kahler angles and constant curvatures, and then
prove two unigueness theoran s
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1. Introduction

L et S° be the unit sphere in R" Then there is an amost complex structure J on S°

w hich makesS® into a nearly Kahler manifold in the sense that , for any vector field X on
6

S,
(vxJ) (X) =0, (1 1)
where V denotes thelL evi-Civita covariant differentiation related to the standard metric
onS°. In the past years, much progress has been made in the study on minimal surfaces
inS®"™. A sanatural extension, we obtained in [6] the follow ing rigidity theorem:

Theorem 1 1 L etM bea camp lete and minimal immersed surf ace in S°w ith constant
K ahler angle If the Gauss curvature K =0, then either K= 0 or K= 1

Thus it isworthy to find all minimal surfaces in S°w ith constant Kahler angles and
constant Gauss curvatureskK = lorK = 0. Note that nominimal surfaces exist inS" (for
any n) with constant curvatureK 0. In thispaper, after ssme preliminary lenmas, we
will give in Section 3 examplesof supem inimal surfaces in S°w ith constant K ahler angles
and constant curvaturesK = land K = 0. Furthemore,we are able to prove theorans

show ing that these examples are in a sense unique ones, see Theorems 4.2 and 4. 3 for
detail
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2 Preliminary L enmas

Through out thispaper, we use the sane notations and conventions as in [6]. For
exanple, the range of indicesw ill be as follow s
1<A,B,C, =6, 1=i,j,k, < 2,
3=<abc =4 5=0aBY =6
The multiplication of the Cayley numbers defines one cross-product” X
follow:

on R’ as

1
xx y= T (xy- yx). (2 1)
T he standard inner product on R’ can be reformulated as

(x,y) = - ‘;‘(xy+ yX).

It can be shown that ', the operation x in (2 1) satisfies the follow ing identity:

xX (yx z)+ (xx y)x z= 2(x,2)y - (x,y)z- (y,z)x (2 2
Furthemore, formula
J(X)=xx X, x S, X TS° (2 3
defines an almost complex structure J onS°, which is also nearly Kahlerian in the sense
of (1 1).
Define a subgroup G: of the orthogonal group O (7) by
G:= {g O(M;g(xxy)=g(x)x gy} foralx,y R (2 4)
Then G: is nothing but the group of isnetrieson S°preserving the nearly Kahler structure
g st
Now letM be an oriented metric surface, that is, an oriented Riemannian manifold of
dimension 2, and x be aminimal mmersion ofM into S°. For any orthonomal frane{e,
e} onM , the Kahler angle of x is the angle Obetween J (dx (e:)) and dx (e2) onS°, satis-
fying0 < =< . Inwhat follow s,wew ritee alo for dx (e) to simplify matters
Starting from any orthonomal frame field { e:, &} onM , we can construct along x an
orthonomal franefieldE = {e, e, &} onS’, such that the follow ing are satisfied in case
6z 0,
J(e) = ec0sD+ esind, J(e) = - ec0sO+ esinb,
J(es) = - esinB- eosO, J(e) = - esinB+ ec0sb, (2.5)
(ved) (e) = Desing J(e) = e,
w here €'ss are free of the choice of e and globally defined, while€'.s depend one. Such a
frane field E , or the correponding {x; e, &, &} , of S°along x will be called* gecial” in
the sequel, w here x denotes the position vector in R
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Let {w} be the dual frame field of {e.}, and we the componentsof thel evi-Civita con-
nection of S°w ith regect to the ecial frame field E along x. Put
ws =y hjw, we= Y hiw,
then one can prove
Lenma 2.1 If sinB% 0, then the follav ing identities hold for the imm ersion x :
Ws + wsc0s0+ wssinB= - wsinG,

26

Ws - (Ws0S0+ wssSinO= wisinG, (26

Ws = We00SO+ wsSiNG, (s = - (Wsc0SO+ WisSING, (2.7
dO= ws- s, (Ws+ W) osO+ (wa- 2)sinb= Q (2.8)

Lenma 2.2 If x isminimalw ith constant K ahler angle®# 0, 7T, then along x , the
f ollov ing identities hold:

s = W2, Ws+ = 0, ws= 0, (2.9)
[(h3)?+ (h) + (hi)?+ (h)?]oosB= 2(hihi - hihi). (2. 10)

Using (2.2), (2.3) and (2.5), it iseasy to prove another lenma
Lenma 2.3 For any immersion x o M intoS°, if theKahler angle 82 O, T, then the
follav ing equalities hold:
&X &= x,e%X e= cschk x (e X e) - cscOootbk + ot’f x e, (2 11)

X = -cck X (e X &)-00tbe x e, 2 12)
eX = -csck x (X &) + 0tbe X e,
& X &= -sinfe x e-00sb x e,

2 13
eX &= -SinBex &+ 00sks x e, ( )

w here cscO= snB

3 Examples

Now we give wo exanplesof minimalsurfaces inS°, w hich are of constant cur-
vatures and constant K ahler angles
Exanple3 1 LetS*= {(xixzxs) R%xi+ xz+ x3= 1}, 0 [0,m. Definex:
S*.s°C R'as
X (X1, X2,X3) = (X1, X2, x30080, x3sin6, 0, 0, 0). (31
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Then for any local isothermal coodinates (u,v) onS?,
J%= (XZ%SCOSG- m%%osﬁ,m%loose— xl%aoose,
X & Xa &
Xla]' XZ aJ,O,XlaJ' X4 aJ,O,O),

J %1%) = wse(XZ%s' X3 %JZ,X3%J1- X1 %3,
X & 8e Xs

oS & @)
where *, * denotes the standard inner product in R>  If we put
& 1 & 1 &
A= | | = | land e = N
then by the fact that S” is a unit here in R, we canw rite
(Jer, &) = cosb (32

Thus, the Kahler angle of x equals identically to 6. Clearly, K = 1.
Example 3 2 Let Obe asin Exanple 3 1, and define( cf. [5])

xoluv) = P (0s(30+ 1 24), 0530+ | Ju- F=v),
oos(‘fl?"e- /\’ 'g'u- ﬁv),o, - sin(‘JS‘G+ { 2v),

- sin(‘;"6+ /Jg'u- ﬁv),- sin(‘JS‘G- qu- ﬁv)),

(u,v) R (3 3)
It is easily verified that xeis aminimal mmersion of the flat R*intoS°,i e, K = 0. Let
_ X _ &Ko
- aJ] eZ - a/l
By further calculations, we can find the secial frame field { e, e, e, 4, 65, es} of xe. In particular
w e have

_ 2 . 2 -1 . 2 _3 1
Je = ( 3sm(36- J_Zv), - l—Gsm( J_U+ J_V)
J_J——63|n('29+ J_U+ J_V) 0, 4’ oos('ZG J_v)

—14—5005(39- J—u+ J—v) Jl—oos('26+ eus J—v))

€ = (' 3S|n(3e+ 2V),J—65|n(36+ 2U' J—ZV),
_Lsin(‘le- 2y _Lv),O, - 'Zoos(‘le+ 1 2v),
{ 6 3 2 J

o

_le+ _3 _Lv))

J— J—CDS(J"G 2U
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T herefore
(Je, €2) = o0sh,
i e, xehas constant Kahler angle 6. The components for the second fundamental form of xe are

as follow s
1
h%:- h‘Iz:- hglz' hgzz y
J 2

hit= h%= h&= h%x= 0,h}= hi= 0, i,j= 1,2

4 Uniqueness Theorans
In this section, we prove two uniqueness theoran s

Theoran 4 1 LetM beaconnectedmetric surface, x, X be wominimal mmersionsofM into S°
w ith constant Kahler angle 6 8regpectively, 0 6, 6 1. Suppose that, with repect to wo ecial
frane fields along x and x determ ined by a sane local frame field onM , the connection matrices

w, @ of R’ equal to each other. Then x isGz -congruent to x if and only if 6= 6.

Proof Let{x;e,e,e&a} and its tilde denote the wo ecial frane fieldsof x , x just mentioned

If G is a subgroup of O (7) , Then, the tem of x being G-congruent to x isequivalenttox = g*
x for omeg G. SinceG:isthe automorphisn group of the nearly K ahler phereS®, the' only
if” part of the proposition is trivial

For the" if” part, we need a fundanental theoren of Riemann geometry. By this theoren and
the assumption, there issomeg O (7) such that, at any point ofM , the gecial frame fields of
x and x areg -related, i e ,

X=g*x,&=g*ea,1<A <6 (4 1)
Since the Kahler anglesof x and x are a sane constant, we see from (2 3), (2 5) and (4 1)
that,
J(g(e)) = gi(e), (42
or, equivalently,
XX &= gkxx e) (4 3)
T ake differentiationsof (4 3), we get
Zwé‘ix & + Z(uaxx & = ng(ax e) + Zmag(xx &)
Thusby (4 3), we have
glex &)= &x &= g(e) x gle). (4 4)
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Now, we can useLeanma 2 3with (4 3) and (4 4) to get

g(ex &)= g(e) x g(e),g(esx &) = g(e) x g(e),

g(eex &) = gl(es) x g(es), glesx &) = gle) x g(e), (4 5

g(esx &) = gle) x gles),g(esx &) = gle) x ges).

Fix one pointoonM . {x; e, e, e} atois a standard basis for R’ , and all the relations from
(4 3) to (4 5) areequivalent tog Gz (cf. the definition (2 4) of G2). O

Now we are in aposition to prove our uniguness theoran s

First, if the GausscurvatureK = 1, thenx istotally geodesic Thus the follow ing theorem isa
direct consequence of Theorem 4 1
Theoren 4 2 L etM be a complete and connected metric surface, and x be aminimal mmersion
ofM into S°with constant Kahler angle® (0,7 . If the GausscurvatureK = 1, then up to a
G2 -congruence, X exists uniquely.

Similarly, we have for thecaseK = 0,

Theorem 4 3 L et R? be the 2 -planew ith the standard flat metric, and x be a supeminimal im-
mersion of R? into S°w ith constant Kahler angle® (0,7 . Then, upto aGz -congruence and a
rotation on R?, x exists uniquely.

Proof L et (u,v) be the canonical coordinateson R? such that the standard flat metric isw ritten

by ds’= du’+ dv®. Seter = éaj €= ?aa/and thus{w, w} = {du,dv}. Thereforeby (2 9),
w= 2= Q (4 6)

Note that a rotation on R? does not change the standard metric and the complex structure, it
makes no change on the Kahler angle of x.

Because of Proposition 4 1, we need only to show that the connection matrix of R?, with re-
gect to the' gecial’’ frame field along x , can be uniguely detemined To thisend, letE = {e,
&, &} be the gecial frame field along x determm ined by e1 and &2, and hjj, hij the componentsof the
second fundamental form of x w ith regpect to E.

Set

Ha= hii- A - lhiz, He= h%- {- 1h%,

f = |ZH§+ ZH§|2.
Thenf isaglobally defined, and x is called supeminmal if f = 0.
SinceH .°’= Oby theminimality and (2 9), f = Oif and only if Z H &= 0, which isequivalent

and

to
(hi)?+ (h%)%= (h)?+ (h%)? hiih% = - hhhd 47
Suitably choose the frane{e1, &} , we can assune thathf> = 0, thusby (2 10) and (4 7),
hi = hf= 0, (4 8)
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w hich is independent of the choice of {e1, &2} . (4 8) togetherwith (2 6) and (2 7), show s that

W= - U, Ws= W, Ws= We= Q (49
N ext, we are to determinehfj ’s By Gaussian equation and the flatness,
Z (hi)*= 2 (4 10)
Dueto (2 9), (4 10) becomes
(hi)?+ (h%)?= 2.
Thus there is a function t, such that
hil = J_st t, h?z = J—ZSin t, hLlll = J—ZSin t, hilz = - J—stt (4 ll)
T herefore,
1 . _1 .
s = (rcost+ wpsint), wss = (sin t- w oost). (4 12)
T2 T2

T ake external differentiationsof (4 12) using (4 6) and (4 8),we get
dt w=dt w= 0,
These are equivalent to dt= 0, that is, t= const In particular, hi are all constant on R?.
To find the value of t, we note first that, if the frane{e, e} is changed to { &, &} by

6= awsd+ esind,&=- asnd+ ewns, (4 13)
Then {es, es} must change into
&= WS+ easin P,&=- esin U+ escos . (4 14)

U sing (4 13) and (4 14), we derive that
hii = hl1 s 30 + hisin 3, h%. = - hiisin 30 + hi: s 3.
If h2#% 0, we can choose @ suitably, such thathiz= 0.W ithout lossof generality, we assume
hiz= Oandost= 1. So that (4 11) becomes

hii=- hiz= J—_J;,and hi= hti= Q (4 15)

Combine fomulas obtained, one sees that, with a rotation on R? if necessary, the connection
matrix of R’ alon/g x can bew ritten as follow s

0 - du - dv 0 0 0 0
1 1
du 0 0 - du dv 0 0
{2 {2
1 1
dv 0 0 dv du 0 0
{2 {2
1 1 , (4. 16)
0 du - dv 0 0 dv 0
{2 {2
1 1
o - dv - du 0 0 - du O
{2 {2
0 0 0 - dv du 0 0
0 0 0 0 0 0 0
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w hich isuniquely detemined O
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