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Abstract: W e take the two-dimensional vorticity equations asmodels to describe gpectral meth-
ods and their combinationsw ith finite differencemethodsor finite elenentmethods, w hich are ap-
plicable to other smilar nonlinear problens Some numerical results and error estimates of these
methods are given
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1 Introduction

T he basic idea of gpectralmethodsfor partial differential equations is to approxim ate ex-
act olutions by using gectral functions asbases Themethods stam from the classical Ritz-
Galerkin method, w hich have high accuracy 0 called the convergence of* infiniteorder”. But
they were not widely used for a long time because of the expensive cost of computational
tme However, the discovery of the Fast Fourier T ransfomation (FFT) and the rapid de-
velopment of modern computers removed this obstacle A Ithough finite difference methods
and finite elanent methods are very successful in numerical lutionsof partial differential e-
quations, it isno doubt that for some problan s gectral methods aremore favorable because
of its high accuracy.

Spectral methods have been applied successfully to numerical smulations in science and

engineering Gottlieb and O rszag"™

summarized theoretical results and experience of gpplica-
tions to many practical problens They provided numerical analysis for linear problens
Since then, ectral methods for nonlinear problem s have al®o advanced rapidly w ith their
applications to fluid dynamics, w eather prediction, and other fields [34, 1, 35, 21, 30, 28, 29,
33,19, 2,9]

The gectral method, pseudogpectralmethod, and Taumethod, w hich are different ver-
sions of gpectralmethods, can be derived from themethod of w eighted residual W e consider

here an initial-boundary value problem as follow s

* Received date 1996-05-30

— 375 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Lu(x,t) = f(x,t), x Q tO,
Bu(x,t) = 0, x &, t=0, (1.1)
u(x,0) = uo(x), x Q

w here Q is a domain w ith the boundary &, L is a differential operator, andB is a linear
boundary operator. Them ethod of w eighted residual is to find an approximation olution to
(1 1) of the fom

N

uv (X, t) = us (x,t) + Zan(t)Q?(x), (12

w here trial functions{®(x)} (1 = n =< N) are linearly independent, us (x,t) is chosen such
that uv (x, t) satisfies the boundary condition, and a.(t) are detemined by the follow ing e-
quations

J’Q[LuN (x,1) - f(x,t) wa(x)dx = 0, to,n= 1,2, ,N, (1.3)
w here thew eight functionsw »(x) are linearly indegpendent, and by a similar treatment of the
initial condition
Spectral method (Galerkin approximation) A ssume that ®(x) satisfy the boundary condi-
tion 0 that us (x,t) = O0andw eight functionsw(x) = ®R(x). Therefore, (1 3) leads to
Cuw@®®=(0®,R, n=12 N (1 4)
w ith the inner product (u,v) = U (x)v (x)dx. Sometimes, it ismore convenient to de-

scribe the scheme (1 4)via a projection operator Py . So w e define a finite dimensional linear
Pace

Vi = an{®Rn= 1,2, ,N }, (15
and definePvnu  Vn such that
Pvu,®) = (u, R, n= 1,2, ,N. (1 6)

It is easy to show that Pnu is uniquely detemined since {®(x)} are linearly independent
Thuswe know that (1 4) isequivalent to the follow ing scheme

PnLun (x, 1) = Puf (X, 1). 17

Pseudospectral method (collocation approxmation) In this case, H%(x) are the sane as in
pectral methods But thew eight functions are taken asD irac d functions

wn(x) = 6(x- xn), n= 1,2, ,N,

wherex,  Qcalled collocation points such thatdet (R (x») )Jnxn # Q Now, (1 3) leads to

LUN (Xn,t) = f(Xn,t), n= 1,2, ,N. (1 8)
A 12, the scheme (1 8) can be described via an interpolation operator Pc. To thisend, we
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definePcu  Vw such thatPcu(xs) = u(xn), n= 1,2, ,N. Itiseasy to see thatPcuis
uniquely detem ined since det (R (x»))nxn # Q Thus, we know that (1 8) is equivalent to
the follow ing scheame

PcLun (x,1) = Pcf (x, t). (19

Taumethod Herewe assume that ®(x) are orthogonal, but need not satisfy the boundary
oondition Theus (x,t) in (1 2) isof the fom

N+m

Us (X,t) = Z an(t)q?(x)a

w herem is the number of indegpendent boundary conditions T hew eight functions are taken as
wa(x) = ®R(x)(h= 1,2, ,N). Inthiscase, the schame (1 3) isread as
Cuw®,RW=GFWOW,R, n=12 N (1 10)

w ith them equations given by the boundary constraints The Tau goproximation scheme (1
10) can alo be described viaa projection operator®.

In thispaper, w e take the two-dimensional evolutionary vorticity equations asmodels to
introduce some numerical methods related to ectral methods

. Fourier pectral (or pseudosectral) methods

. Fourier gectral (or pseudosectral) -difference methods

. Fourier gectral (or pseudosectral) -finite elanent methods

. Fourier-Chebyshev gpectral (or pseudogectral) methods

The first method is for problan sw ith periodic boundary conditions and the others for
onesw ith sami-periodic boundary conditions,w hich are applicable to other smilar problan s

2 Fourier Spectral or Pseudospectral M ethods for the Per iodic Problem s

For problen sw ith periodic boundary conditions, Fourier gectral methods are pow er-
ful

2 1 A Fourier SpectralM ethod

The vorticity equations are the stream function-vorticity formulation presentationsof in-
compressibleN avier-Stokes equations

Let £(x,y,t) and Y(x,y, t) be the vorticity and stream function regectively. & (x,y)
andfi(x,y,t) (I= 1,2) aregiven A Il of them have theperiod 21rfor the variablex andy. L et
Q= {(x,y): - mx,y T

W e consider the follow ing problem

Q5+ J(EY) - vv?E=f,, in Qx (0,T),
- VW= B+ £, in Qx (0,T), 21D
Ex,y,0 = &(x,y), in Q

— 377 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



w here Uis a nonnegative constant andJ (5, ¥) = g¥ag- aVgce.
Let (u,v) = Z# J;U(X.y)v (x,y)dxdy, Julf = (u,u). To fix ¥(x,y,t) , we require
that (Y(t),1) = 0(0 < t < T). Consider thew eak formulation of (2 1) asfollow s

{(aﬁ(t),v) + QED,Y®),v) + u(vEWD,vv) = (f2(D,v), t (0,T),
(VW(),vv) = (E@1),v) + (F2(),v), t (0,T)

(2 2
used the ectral method for the problem (2 1) and proved strict error esti-
mates of the schane

For any positive integerN , setVy = Span{e™ ™:1°+ m? <N ?°}. Let The themesh
step of the variablet. Denoteu“(x,y) = u(x,y, k) by u“. Define

ui = 'l_l_ (U td), U= '12‘

Kuo Pen-yu'®

(uk+1+ Uk).

A Fourier gectral schane for olving (2 1) isto find

I = Z r}’mei(mmy)’ @ = Q'P,mei('“ my)' (2 3)
<N2

2 2

12+ T2 1“+m-<N

such that foranyv Vwn~andk = O,

(Mv) + QU+ 60U, ®),v) + o(v (F+ orh),vv) = (f§,v),

(VP vv) = (IF+ 5 v),

(®1) =0

(Mv) = (&,v),
w here 6, 0= Oare paraneters W e point out that if 6= 0the schene (2 4) can be 0lved ex-
plicitly such that

(2 4)

+ 1 _ 1

™= 1T s+ mz){[l- o(1- oT(IP+ m?) ]n + gfn} (2 5)
w here
gim= (- (1 ®), ")) (2 6)
It is easy to see that the follow ing conservation lavshold Iff5= 0, we have
(M,1)= (11, k=0, (27
and if 6= 0= 1/2in addition, we have
n- 1 N
I7IF+ 2oy v = (2 8)
0
Kuo Pen- yu'™ point out that if we use the filtered gherical mean summation
2 2| Y
Ty =y [1- e J Mw, ™™, ¥=a0 (29
12+ N 2 N
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then w e can get better results
2 2 A Fourier Psaudospectral M ethod

W hen the gpectral method is used, we have to deal w ith the integration such as (2 6).
In order to avoid this trouble, the pseudogectral method is developed, which is easier to
perfom and saves the cost in computation, and ismore favorable for nonlinear problens
But thismethod sometimes has nonlinear instability due to the aliasing A ccording to Kuo
(221" theBochner ssmmation (2 9) could be used for elim inating these phenom ena and
raise the accuracy of approximate lutions M a He-ping and Guo Ben-yu'® developed a

Pen-yu

Fourier pseudoectral method by using the Bochner summation for problem (2 1). L etW
= an{e™™: - N = Ibm =N}, Q= {(ghjh):- N =<gqg,j=<N}withh= 2m/(N
+ 1). LetPn: L?(Q) - Vn be the orthogonal projection operator defined by

(Pnu,v) = (u,v), Vv Vu (2 10)

and Pc: C(Q) - W be the interpolation operator by

Pcu(x,y) = ulx,y), Vi(x,y) Q. (2 11)
For ¥= landu Vw with the coefficientsuim , we definea restraint operatorR = R (3) by
2 2 X .
Ru(x,y) = Z {1_ [%m—J ZJ unme ), (2 12)
12+ N 2 N

To approximate the nonlinear tem J (u,v) , we definePc = PnPcand
Je(u,v) = 'Jz‘{Pc(aua,v— guav) + &Pc(ugv) - gPc(uav) } (2 13)

The Fourier pseudogectral scheme for lving (2 1) is to find’f, P as (2 3) such that

fork = 0,

T+ RICRT+ SRILRP) - ov?(t+ orl) = Pcfh,

- VQP= T+ Pofs,

(®1) = o,

= P&,
where 6, 0= Oareparaneters If 6= 0, then the schene(2 14) can be lved explicitly as
in (2 5) butw ith

(2 14)

m= (fi- RICRT,R®), " ™)y, (2.15)
in w hich

(u,v)n = m(xvz%u(xd)'\/ (x,y)
and w hich can be computedw ith FFT efficiently. By the fact that foru,v,w  Vu,
Qc(u,v),w) + Qclw,v),u) = 0, (2 16)

— 379 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



it iseasy to see that the same conservation lavsas (2 7) and(2 8) hold for (2 14).

The numerical results given inM aHeping and Guo Benyu'® show that the restraint op-
erator R (3) improves the stability of the pseudosectral method, especially in the casew hen
the oolutionsof the PDE changemore ragpidly. The value of ¥must be chosen suitably to get
good results How to choose the parameter ¥ suitably is relative to the snoothnessof the ex-
act olution Generally gpeaking, if the exact :lution changes rapidly, w e should take snall
Y, and conversely, take large Y.

3 Four ier Spectral or Pseudospectral-D ifferenceM ethodsfor the Sam i-Per iodic Problem s

H ereafter w e consider the two-dimensional vorticity equationsw ith periodic and nonperi-
odic boundary conditions, and assume that Uispositive
Letl={x:0x 1},/={y:0y 2m ,and Q= | x [. W eassume that all functions have
the period 21rfor the variabley and that
£0,y,) = &1y,0= Y0y, 0= ¥21y)p=0  Vy 1, t=z0. (31

A Ithough Fourier ectral and p seudogectral methods are favorable for periodic prob-
lens, they does notwork for theproblem (2 1) with(3 1). To lve it, M urdock™" ** used
Chebyshev gectral methods, and Guo Benyu and X iong Y ueshan'*"! follow ed the idea of Guo
Benyu!” to construct a class of gectral-difference schenes The key point is the use of a
skav symmetric decomposition of the nonlinear convection term's T hen, if theparametersin
the scheme are chosen suitably, the numerical solution satisfies sami discrete conservation
lav s and better error estimates are obtained

3 1 A Fourier Spectral-D ifferenceM ethod

L et h be themesh acing in thex -directionwithM h= 1, and let
Ih={x= jhi1<j<M-1} (32
Define

Du(x,y,t):‘;‘(u(x+ hy,0- u(x,y,0), Du(x,y,0=Dulx- h,y,1,

DAu(x,y,t): ']Z‘(Du(x,y,t)+ Du(x,y,t)), Vu(x,y,)=DDulx,y,t)+ gu(x,y,t).

The key problem in the construction of a reasonable scheme is to smulate asmuch aspossi-
ble the propertiesof the lution of (2 1). Indeed, iff1= f2= 0, then

HQE(x.y,t)dxdy- _fj’l[aﬁ(l,y,t)- &E(O,y,t)]dxdy=J]'Q§o(x,y)dxdy (3 3)

and

Jf & 0y Daxay + Zf;IIQ[(ag(x,y,s))2+ (38(c,y,9)) Joxdyds= [ Blx,y)dxdy.

(3 4)
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The schanew as constructed such that its solution satisfies sani discrete conservation
lavs Note that

gwau- awgu= a(dgwu) - g(éwu) = gWwau) - & qu).
T herefore, define
Ji(u,v) = D u- Dvau, J2(u,v) = D (gvu) - § O wu),

Ja(u,v) = §(Du) - D (vau), I9(u,v) = ZO(I.L(U,V),

wherex= (04, 0b,06),060 = 0, andou + O+ Ot= 1.
Now set
Vi = San{e”: |[I| =N 1}, (3 5)

and let Pn:L *(I) - Vn be the orthogonal projection operator such that,
-I‘IN(PNU' uyvdy = 0, Vv V. (3 6)

L et F and ¥ be the approximations to & and Pregectively such that
H(x,y) = T(x)e”,  Px,y) = P(x)e".
’» 2z,

The pectral-difference scheme for (2 1) and (3 1) is
T+ PIQ M+ STEL®)-oA(F+ ol = Pufk, inlnx k=0,
- A®P= TF+ Py fs inlnx k=0,
H,y) = T(Ly) = P0Oy) = P(1,y)= 0 Vy [k=0,
= Py& inlax [,

(37

w here dand gare paraneters such that0 < 6, 0< 1. If 6= 0= 0, then (3 7) isan explicit
schene Othew ise, iteration isneeded to get 'f fork = 1. Assumethatff= f5= 0, we

have the follow ing conservation lav s
n- 1

(M 1) + TZ{(O(z+ A (M+ 501, ®) + 25+ ort,1) } = (7,1) (3 8)
w here
va=hy W) vE))n W) vx))r= g}lﬂx,y)'\/ (x,y)dy,
[l = @uwn Julin= ZlPulf+ 3 ulk+ aulk
Av) = 2UE- ), 3vE- ) 3 W), v,
S@v) = 5 Wh), v+ - h),v(- h)
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M oreover, ifa = Gkand 6= 0= 1/2, then
n- 1
IIE+ 20y [ [2n+ s, M) 3= |PIR (39
—0

Clearly, (3 8) and (3 9) are reasonable analogiesof (3 3) and (3 4), regpectively.

The numerical results given in Guo Benyu and X iong Y ueshan™! show thatwhen o= 0t
and the olutionsof (3 7) satisfy the sami discrete conservation lav s, better results are ob-
tained It isalso shown that good results can be got even for snallN. By a skew -symmetric
decomposition of the nonlinear convection term, w e obtain better numerical results than by
themore conventional form. But a littlemorework is required for calculating the Fourier co-
efficients of the nonlinear tem.

3 2 A Fourier Pssudospectral- D ifferenceM ethod

The calculation of Fourier coefficientsfor the nonlinear convection temm takes quite a lot
of time in ectral-difference schane To reanedy thisdeficiency, Guo Benyu and Xiong Y ue-
shan'® provided a p seudo spectral-difference method follow ing the work of Guo Benyu and
Zheng Jiadong'’.

W e shall use the same notationsas in the above section W efirst introduce the pointson
Cyi= 2m/(N + 1) (0<j < N). LetPc: c (N - Vu be the interpolation operator such

that
Pculy;) = ulyi), 0<j=<N. (3 10)

For ¥= 1, we define a restraint operator by R = R (3) based on theBochner summation such
that for anyu Vw~ with the coefficientsur,

Ru(y) = l;[l- H“jwe”y. (3 12)

To approximate the nonlinear tem J (u, v) , we define the follow ing nonlinear operators
Jea(u,v) = Pc(@Du- Dvau), Jcz(u,v) =D [Pc(u@vg] - 3[Pc(D V)],
Jea(u,v) = §[Pc(Du)]- D[Pc(vau)], JI&(u,v) = Z ®Je,i(u,v),
-1

wherex=(04,06,08),0¢ = 0, andot + O+ O= 1
L et Fand Pbe the approximations to Eand ¥ repectively, where T (x,y), P(x,y) Vn
forallx Inandk = 0. The pseudospectral-difference schame for (2 1) and (3 1) is

T+ RICRT+ SRIFL,RY) - oA(F+ o) = Pcfl,
- A®= T+ pofs,

m,y) = M(Ly) = ®0O,y) = Py = 0

M= Pc&

(3 12)
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lffi= f5= 0, then

1) + THZ{(0(2+ WA RT+ FRILRY) + 28(T+ vl D} = (1. (3 13)

If in additionow = ceand 6= 0= 1/2, then (3 9) holds als.

The numerical results in Guo Benyu and X iong Y ueshan'*®! show the sam e advantages of
(3 12) asthoseof (3 7). In particular, evenwe use the skew symmetric decomposition of
the nonlinear convection term, the computational time isnearly the sane asby themore con-
ventional fom.

4 Four ier Spectral or Pseudospectral-Finite ElenentM ethods for the Sam i-Pe-
riodic Problans

It may be hard to generalize the combined ectral-difference method to problems on
non-rectangular domain T he finite elanentmethod can be successfully applied to such prob-
lans But the convergence rate is Imited by the degree of interpolation On the other hand,
the ectral and p seudo pectral methods have® infinite” order accuracy if the olutions to be
approximated are infinitely differentiable But it is very difficult to use then to lve prob-
lan son non-rectangular domains In particular, Fourier gectral or pseudo gectral methods
are gpplicable only to periodic problens They could not be used directly to olve (2 1) and
(3 1). Canuto, M aday, andQ uarteroni’® proposed a combined p seudoectral and finite ele-
ment method w ith gpplication to the steady problem of N avier-Stokes equations Guo Benyu
and Cao W eming"” constructed a gectral-finite elenent scheme for olving (2 1) and
(3 1.

4 1 A Fourier Spectral-Finite ElenentM ethod

L et Tw be a class of regular decompositionsof the interval | and satisfy the inverse as
sumption. Let0= xo x1  xw = 1are the grid pointsand I = (xi 1,x1). Defineh =
maxi<isw |xi- X 1], h= mincizw [xi- xi 1|, and assume that there is a constant £ inde-
pendent h such thath < Ph. L et IPm be the set of polynomialsof order < m and

Smn= {v:iv|, IPmforl1<1<M,v iscontinuousandv(0) = v(1) = 0}.
Denote by 11" the piecew ise L agrange interpolation operator of orderm onto Se.n, i e, I"u
is theL agrange interpolation of orderm of uon each I/ (1 < | =M ) and continuouson|. Vn
and Pn are defined by (3 5) and (3 6), regectively.

The pectral-finite elenent method for lving (2 1) and (3 1)isto find ', ¥ S3. ®
Vv such that foranyv  San®@Vwy andk = 0,

(M,v) + QU+ 60LB),v) + o(v (IF+ oth),vv) = (IMf5,v),
(VP vv)= (F+ IMfs,v), (4 1)
= 1"Pn &,

w here 6, 0= 0 are paraneters
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The numerical results given in Guo Benyu and Cao W eim ing"™” show that

(i) W ith the sanemesh sizes, the ectral-finite element methods give better results
than the fully finite elenent methods

(i)  Only arelatively snallN isneeded to relve the solutions iny -directionw ith the
gectral-finite elenent methods Thismeans a great cut in computationwork Thismethod
can be easily generalized to three-dimensional sami-periodic problens, evenw hen the domain
isnot rectangular.

4 2 A Fourier Pseudospectral-Fin ite EleanentM ethod

In comparionw ith gectral methods, p seudo pectral methods can be mplemented more
efficiently. But their stability may be poor due to the aliasing In some probleans, the opti-
mal rate of convergence in theL >-nom can be obtained for gectral methods, but not for
p seudo ppectral methods [ 29, 25].

Guo Benyu andM a Heping™ presented a Fourier p seudoectral-finite elenent scheme
forproblen (2 1) and (3 1). A control operator based on theBochner summation isused to
improve the stability. L et the operatorsPc, R(3) , and Jc(u,v) be the same as (3 10),
(3 11),and (3 12), regpectively. Ifu,v,w Sn»®Vwn, then integrating by parts, w e get
(2 16).

The pseudoectral-finite elenent scheme for olving (2 1) and (3 1) isto find 'f, ¥
Se.n @ Vi such that foranyv  Sen®@Vy andk = 0,

(Mv) + RICRT+ SRT,RP),v) + v(v (IF+ ol),vv) = (Pcfh,v),
(VP, vv) = (T+ Pcfb,v), (4 2
’7’: HmPcéo,

where paraneters0 < 6,0< 1. If 6= 0= 1/2andfi= 0, we have (2 8) from (2 16).

Here the operator Jc ('F, ®) is constructed o that the approximation lution satisfies a
conservation smilar to w hat the solution of (2 1) satisfies Thus, the stability is mproved
and the convergence order is heightened In fact, themain of the nonlinear error vanishes,
and w e therefore get better error estmates A I the control operator R is used, which im-
proves the stability and curbs errors, and by which theL ?-optimal error estimate is ob-
tained

9 Four ier-Chebyshev Spectral or Pseudospectral M ethods for the San i-Per iodic
Problem s

The accuracy of both gectral-differencemethods and gectral-finite elanent methods is
still lmited due to the goproximations in non-periodic directions Guo Benyu, M a Heping,

[15]

Cao W eming and Huang Hui'™ proposed another kind of mixed method for olving (2 1)
and (3 1) by using Fourier-gpectral approximation in the periodic direction and Cheby shev-
gectral approximation in the non-periodic direction Themethod keep s the advantage of the

convergence of infinite order”.

51 A Fourier-Chebyshev Spectral M ethod
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In this section, let1= (- 1,1),(= (0,2m) , and Q= | x [. W e assume that all func-
tionsin (2 1) have the period 2rrfor the variabley and

g+ Ly, =¥z 1,y,) =0, Vy 1, t=aQ (5 1)
L etM andN be positive integers D efine
Vu (1) ={v IPuw:v(- 1) = v(1)= 0} (52

LetVn () be the set of all real trigonometric polynomials of degree lessor equal toN w ith
the period 211. Define

AVAVIRN (Q) = Vwm (|) ® Vy (0 (5 3)
Letw(x) = (1- x? “2and define the gpace
L%(Q) = {v ismeasurable: (v,v)w ©} (5 4)

equipped w ith the inner product and the nom
(o= ff poonvioesdy, = . (5 5)

etPun:Low B VAVEY e the orthogonal projection such that
L et Pun:L3(Q) () be the orthogonal projecti h th
(U- PM,NU,V)w: 0, Vv Vun (Q) (5 6)

_l. k+ 1 k- 1
2_l_(u - ue).

The fully discrete Fourier-Chebyshev ectral scheme for olving(2 1) and (5 1) isto
find F,®  Vun (Q), approximating to £and Y repectively, such that foranyv Vuw (Q),

(n(;,V)w"' (J (n{,(p),V)w‘i' _lzlaw(n+l+ n 1,V) = (fli,V)w, k = l,

ao(®v) = M+ t5v)e k=0,
= Pun (% + TE(0)), 7= Pu .~ &,

L et The the step of the variable t and define ut =

(57

w here ao(u, v) = jﬂgw(x,y)v [v(x,y) W) Jdxdy , QE(0) = 0V 2& - J (&, W(0)) +

f1(0).
W e give two exanples to show the numerical resultsof themethod introduced above

Example 1 L et the exact olutionsof (2 1) and (3 1) be
E(x,y,t) = A exp{B sin(Cx + y) + wt}, P (x,y,t) = A exp{wt} (Cx + siny).

For describing the errors, we let Inbeas (3 2), = {y= 2ffN:0<j<N - 1}, andde
fine

E- (0= max |56y, 0 - My, D) ],
Jl " 1/2
E2(1) = Zxrlg(x,y.o- nx,y, 0[] .
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w here M(x, y, t) is the lution of Fourier pectral-difference (FE) scheame (3 7) or the olution
of Fourier-Chebyshev gectral (FCS) scheame (5 7). The errorsof both the FD and FCS
schames are shown in Table | forA = C= w= Q1,B = Q01, and 7= v= Q 001

Table | Errorsfor the F and FCS Schanes

FD FCS
t=1|M=1I00N=4[M=4N-=14
E2(t) Q 2217E-3 Q 5435E-5
Ex (1) Q 6949E-3 Q 6497E-5

Example 2 L et the exact olutionsof (2 1) and (5 1) be
E(x,y, 1) = Q 4(x*1) (x*-8)sin2y €, -vW(x,y, 1) = E(x,y,1). (5 8)
Defineln= {x = cos(mMM):0<=j<M }, = {y=2mMMAN:0<j<N-1}, and

2 1/2

E(u(),v(t)) x Z - |U(va7t)'V(x,y,t)|
u , V = Y p* Iy

2
(X’yzhx . lutx,y, |

Let M(x,y,t) and Hx,y, t) are the lutionsof Fourier pectral-finite (FSF) scheme (4 1) or
the olutionsof Fourier-Chebyshev spectral (FCS) scheme (5 7). Theerrorsof both the FSF
and FCS schames are shown in Table Il foru= Q 001, T= Q O1.

Table Il Errorsfor the FSF and FCS Schames

FSF FCS
t= 5 M=4N=4|M=10N=4|M= 4N =4
E(E(1), (1) Q 4436E-2 Q 7188E-2 Q 3027E-4
E W1, RY) Q 1592E-1 Q 1455E-2 Q 1687E-4

It can be seen that the resultsof the Fourier-Chebyshev gpectral method aremuch better
than those of the Fourier gpectral-difference method or the Fourier spectral-finite elanent
method V ery high accuracy solutions can be obtained w ith the Fourier-Chebyshev method
by using only a snall number of modes Thew eaknessof thismethod is that it can not be
applied directly to the three-dmensional sami-periodic probleans on non-rectangular do-
mains

9 2 A Four ier-Chebyshev Pseudospectral M ethod

For saving thework aswell as kegping the convergence rate of“ infinite order”, Guo
Benyu and L i Jian'*”! developed a Fourier-Chebyshev pseudoectral method W e use the
sane notations asin Section 5 1 Furthemore, let{x;} and {w;} be the nodes andw eightsof
Gaussl obatto integration, nanely

Xq = oosqﬂ, for0=<=g=M™M,

M
Wo= Wm = E\IAL Wq = I\_/TII forl<g=M - 1
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Al, puty; = 2mj/(N + 1) and define
Qin = {(Xq,y)):0=g=<M, 0=<j=<N}L (5 9
W e denote by Pc the interpolation from C(Q) toVun (Q) ,i e,
Pcu(x,y) = u(x,y), onQun.

RecentlyM aH eping and Guo Benyu'®” generalized the restraint operator used in thepre-
vious sections to the Chebyshev gpproximation For thismixedmethod, let 1, %= landR =
R (X, %) such that if

M

V= Zo IZN uaTq(x)e", (5 10)

Tq(x) being the Chebyshev polynomial of degreeq, then

M Y,
5 glo el I
Ru Zo lzNum[(l ‘M J [l N
For approximating the nonlinear convection tem, letJc(u,v) = Q[Pc(ud)]- @[Pc(uav)]
. Let M and ® be the approximations to £and Yas in(5 7).

T he Fourier-Chebyshev pseudospectral scheme for (2 1) and (5 1) is to find 'f, ®
Vun (Q) such that

yﬂ Tq(x)e" (5 11)

T+ RIcRT,RP) - levz(mu Y = pefk,

- VXP= N+ pfl, (5 12)
M= Pun (% + TQE(0)), = Punx &,

The numerical results given in Guo Benyu and L i Jian!**’show the advantagesof this ap-
proach It provides the numerical olutionsw ith high accuracy, but needs lesswork than the
Fourier-Chebyshev gpectral method

& Error Estimates

Recently ectral methods, pseudogectral methods, and related m ixed methods are de-
veloping successfully. M uchwork has been done on the numerical analysisof thesemethods
systematically (See Canuto, Hussaini, Quarteronl, and Zang'”, and Guo Benyu'!”). In
1981, Guo Benyu adopted a Fourier spectral method for solving the K. D. V. Burgers equa-
tion and strictly proved the convergence (See Kuo Penyu™™ and itsfoot note). T his isone of
the earliest theoretical work of gectral methods for nonlinear problens L ater, Guo Benyu
et al generalized this technique to the R. L. W. equation, vorticity equation, N avier-Stokes
equation, and the flow with lov M ach number. In particular, Guo Benyu andM aHeping"™”
used such amethod for the three-dmensional compressible flow w ith strict error estimates
w hich isadifficult job Thesework extended g-stability (i e , generalized stability, see Guo
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Benyu'™ and Griffiths®) to gectral and pseudoectral methods and thus provided a new
framewvork in the error analysisof nonlinear problem s

The error estimatesof the schanes introduced in Sections 2--5 have been strictly proved
regpectively, by Kuo Penyu™, M aHeping and Guo Benyu™, Guo Benyu and X iong Y ue-
shan™"** Guo Benyu and Cao W eiming™”, Guo Benyu andM a Heping'*, Guo Benyu, M a
Heping, Cao W eiming and Huang Hui"™, and Guo Benyu and L i Jian'*’.

W e now give these theoretical results For simplicity, only themain conditions and re-
sults are given For details, we refer readers to the pagpersmentioned above

Firstwe introduce some function gpaces W e denote by H *(€) the Sobolev ace and by
H 2 (Q) the subgpace of H “(Q) of all functionsw ith the period 2mfor the variablesx andy .
LetH 5() be the Sobolev gace of all functionsw ith the period 2m for the variable y and
H %(1) be the Sobolev pacew ith thew eight w. Denote by H #(I;, H “(1)) the abstract Sobolev

pace!®. W e define the nonisotropic Sobolev paces
HEP(Q) = LE(MH (D)) n HEW L2(1)), HER(Q) = L2(5 HE()) n HET L)),

Hereafter, assume that T, h are suitably snall andM , N are large enough, and that T=
O (h*), T= O ?) . LetC denote various positive constants dependent of the lutions of
(21) & ¥, andf (1= 1,2, but independentof T, h, M , andN .

W e have the follow ing results

1 Let £and¥be the olutionsof (2 1) with periodic boundary conditions A ssume that

) HI@ (@ 2,90 HENQ, ando S orN? jrT o If Misthe olution of
(2 4) or the olution of (2 14),thenfornt= T, |T- &|=c(t+ N"9).
2 Let £and Ybe the oolutionsof (2 1) and (3 1). A ssume that

W, Y0 HYZUHPYD) n HY* U, HAD) (€0, 0),00= ok,

1 4h’
and o 50Ty 20) (9+ N *hY)-

then fornt= T, |T- €lh=c(t+ n*+ N ).
3 Let £and Ybe the olutionsof (2 1) and (3 1). Assume that £ () H $#(Q) (&,

B2, Y1) HY*“¥ Q, ando ‘12‘ —Z—LC|(1- 20) w hereC: is ome con-

stant If Mis the oolution of (4 1) or the oolutionof (4 2), thenfornt=T, |T- &|=c(z
+ h*+ N %, whereax= min(em + 1).

If Mis the oolution of (3 7) or the olution of (3 12),

orT(h 2+ N?2

4 Let £and ¥ be the olutions of (2 1) and (5 1). A ssume that (1), ¥(t)
H&8(Q) (0, B 2), and for omepositive constantsCiandCz, CIN <M < CN , 7= O (M
+ N )" Y. If Nis the lution of (5 7) or the solution of (5 12), then fornT< T, |7 -
Elo=c(@+ M %+ N ).

Remark In thispaper, we consider the problensw ith the periodic boundary condition in
one direction If, in this direction, the boundary condition is not periodic, then we should
use Chebyshev gpectral or pseudo pectral methods instead of Fourier ones, and their combi-
nationsw ith other methods (See Guo Benyu and He Songnian™’, Guo Benyu, M a Heping
and He Jingyu™®.

— 388 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



References

[1]

[2]

[6

—_

[7]
(8]
[9]
[10]
[11]
[12]

[13]

[14]

CanosaJ and Gazdag J The Kortew eg-deV riesB urgers equation [J] J Comp Phys, 1977, 23

393-403

Canuto C, HussainiM Y, QuarteroniA and Zang T A. Spectral methods in f luid dynamics [M ] New
York: Springer-V erlag, 1988

Canuto C, M aday Y and Quarteroni A. Canbined finite elanent and spectral approximation o the
N avier-Stokes equations [J]. Numer M ath , 1984, 44: 201-217

Ciarlet P G The Finite Elanent M ethod for Elliptic Problens [M ] North Holland, Am sterdam,
1978

GottliebD andOrszag S N umerical analysis o spectral methods theory and applications [M ] SIAM -
CBM S, Philadelphia, 1977

GriffithsD F. The stability of finite diff erence app roximations to nonlinear partial diff erential equa-
tions [J]. Bulletinof MA, 1982, 18 210-215

Guo Benyu Spectral-diff erence method f or baroclinic primitive equation and its error estimation [J].

Scientia Sinica, 1987, 30(A): 697-713

Guo Benyu D iff erenceM ethods f or Partial D iff erential Equations [M ]. Beijing: Science Press, 1988

Guo Benyu SpectralM ethods and T heir Applications [M ]. Singgpore W orld Scientific, 1998

Guo Benyu and Cao W eiming Spectral-f inite elenent method for t o-dimensional vorticity equations
[J] ActaM athenaticaeA pplicatae Sinica, 1991, 331-345

Guo Benyu and He Songnian Chebyshev gpectral-f inite elenent methods f or incanp ressible f luid f lav
[J] Appl Math 1 ChineseU niv. , 1996, 11(B): 377-398

Guo Benyu and L iJian Fourier-Chebyshev pseudogpectral method f or solving t o-dimensional vorticity
equation [J]. Numer M ath , 1993, 66. 329-346

Guo Benyu andM aHeping Strict error estimation f or a gpectral method o canpressible f luid f lov [J].

Calwolo, 1987, 24: 263-282

Guo Benyu andM aHeping, A pseudogectral-f inite elenentmethod f or solving tw o-dim ensional vortici-
ty equations [J] SIAM 1 Numer Anal , 1991, 28 113-132

[15] Guo Benyu, M a Heping, Cao W eiming and Huang Hui The Fourier-Chebyshev sectral method for

[16]

[17]

[18]

[19]

[20]

[21]

solving t o-dimensional unsteady vorticity equations [J]. J Comput Phys , 1992, 101. 207--217
Guo Benyu, M aHeping and He Jingyu Chebyshev pseudospectral-hybrid f inite elanentmethod f or w o-
dimensional vorticity equation [J] RA IROM ath Model andNumer Anal , 1996, 30: 873-905
Guo Benyu and Xiong Yueshan A sectral-diff erencemethod f or t o-dimensional viscous f lov [J] 1
of Comp. Phys , 1989, 84 259-278
Guo Benyu and Xiong Yueshan The Fourier pectral-f inite diff erence method f or solving tw o-dimen-
sional vorticity equations [J]. ChinessAnn of M ath , 1994, 15(B): 131-15Q
Guo Benyu and Xiong Yueshan Pseudogectral-f inite diff erencemethod f or three-dimensional vorticity
equation w ith bilaterally periodic boundary conditions [J] J of M athematical Research and Exposition,
1994, 14: 1-23
Guo Benyu and Zheng Jiadong Pseudogpectral-diff erencemethod f or baroclinic primitive equation and
its error estimation [J] Scientia Sinica, 1992, 35(A): 1-13
KreissH O andOliger J Stability of the Fourier method [J] SIAM J Numer Anal , 1979, 16 421-
— 389 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



433

[22] Kuo Penyu The convergence o spectral schane for solving tw o-dimensional vorticity equation [J] J
Comp. M ath , 1983, 1. 353-362

[23] Kuo Penyu Error estimations o the spectral method f or solving k d. v. Burgersequation [J] Talk in
M adrid U niversity, M arch 1981, also see A ctaM athematica Sinica, 1985, 28 1-15

[24] LionsJL andM agenesE N on H anogeneousB oundary V alue P roblens and App lications [M ] Berlin:
SpringerV erlag, 1972

[25] M aHeping and Guo Benyu The Fourier pseudospectral method w ith a restrain gperator for the K o-
rtev eg-deV ries equation [J] 1 Comp. Phys , 1986, 65 120-137

[26] M aHeping and Guo Benyu The Fourier pseudogpectral method f or tw o-dimensional vorticity equations
[J] MA J Numer Anal , 1987, 7. 47-6Q

[27] M aHeping and Guo Benyu T he Chebyshev spectral method w ith a restraint gperator f or B urgers equa-
tion [J]. Appl Math 1 ChineseU niv. , 1994, 9(B): 213-222

[28] M aday Y andQuarteroniA. L egendre and Chebyshev spectral approximations of B urgers equation [J]
Numer M ath , 1981, 37: 321-332

[29] M aday Y and QuarteroniA. Spectral and pseudospectral approximations o theN avier-Stokes equations
[J] SAM 1 Numer Anal, 1982, 19 761-78Q

[30] Moin P and Kim 1 On the numerical solution of time-dependent viscous incanp ressible f luid f lov s in-
volving solid boundaries [J] J Comput Phys, 1980, 35 381-392

[31] M urdock JW. A numerical study o non-linear f ects on boundary-layer stability [J]. A IAA, 1977,
15 1167-1173

[32] M urdock JW. Three-dimensional, numerical study o boundary-layer stability [J] A IAA, 1986, 86-
0434

[33] Pasciak J E Spectral methods f or a nonlinear initial value problen involving pseudo diff erential opera-
tors [J] SIAM 1 Numer Anal , 1982, 19 142-154

[34] Schamel H and Elsasser K. The application o the spectral method to nonlinear w ave p rgpagation [J]
J Comp. Phys, 1976, 220 501-516

[ 35] WengleH and Seifeld J H. Pseudogpectral solution o atmospheric diff usion problens [J] 1 Comp.
Phys , 1978, 26. 87-106

( , 201800)

— 390 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



