The Commutative Ring of a Symmetric Design Is Not Associative when $\lambda \neq 1$ *

YIN Dong-sheng

(Inst. of Math. Sci., Dalian Univ. of Tech., Dalian 116024)

Classification: AMS(1991) 05B05,16S99,17A99/CLC O157.1,O153.3

Document code: A **Article ID:** 1000-341X(1999)03-0490-01

Let X denote the set of points of a symmetric (v, k, λ) -design with $n = k - \lambda$. Adjoin a formal symbol I to X to yield a set X^* . Let R denote the free Z-module whose basis is formed by the elements of X^* . If B is a block, we denote the element $\sum_{b \in B} b$ of R simply by B. We obtain a multiplication on R by defining the product of the basis elements by the following rules, and then extending bilinearly:

(i) If a and b are distinct points of X, then

$$ab = B_1 + B_2 + \cdots + B_{\lambda} - n\lambda^2 I,$$

where $B_1, B_2, \dots, B_{\lambda}$ are the Blocks containing a and b;

- (ii) If $a \in X, a^2 = na$;
- (iii) Ix = x = xI for all $x \in X^*$.

The main conclusion of [1] is that R is associative, but I think it may be not true if $\lambda \neq 1$. In fact, we can consider a special case as follows.

 $ac = B_1 + B_2 + \cdots + B_{\lambda} - n\lambda^2 I$, where $a \neq c, B_1, B_2, \cdots, B_{\lambda}$ are the Blocks containing a and c. Here $(aa)c = n(ac) = n(B_1 + B_2 + \cdots + B_{\lambda}) - n^2\lambda^2 I$, and the coefficient of I is $(-n^2\lambda^2)$; $a(ac) = aB_1 + aB_2 + \cdots + aB_{\lambda} - n\lambda^2 a$, and the coefficient of I is $(-n\lambda^2)(k-1)\lambda$. Obviously, it follows that $(aa)c = a(ac) \iff \lambda = 1$.

Certainly, the result for $\lambda = 1$ is not the aim of [1] since it belons to [2].

References

- [1] Prince A R. The commutative ring of a symmetric design [J]. Discrete Mathematics, 1990, 80: 101-103.
- [2] Prince A R. A commutative ring associated with any finite projective plane [J]. J. Algebra, 1986, 99: 295-303.

^{*}Received date: 1997-07-21