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Abstract: Let S be an antinegative commutative semiring having no zero divisions or
finite general Boolean Algebra and pu,(S) the set of n x n matrices over S. In this paper
we characterize the structure of the semigroup R, (8) of linear operators on p,(S) that
strongly preserve the M—P inverses of matrices.
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0. Introduction

In recent years, linear preserver problem over various algebraic structrues, including
rings, fields and semirings, has been of interest to many authors (see [1]-[6]). With the
development of the computer science, linear preserver problem over semirings has special
important value. In this paper we character linear operators strongly preserving M-
P inverses of matrices over many antinegative commutative semirings S, including the
two—element Boolean algebra B, the chain semirings .4, the antinegative reals R*, the
antinegative rationals Q%, the antinegative integers Z* and the Boolean algebras By, of
subsets of a k—element set.

Definitions and properties are given in Section 1. The results for the two—element
Boolean algebra matrices are in Section 2, those for nonnegetive semirings having no zero—
divisors and for the finite general Boolean algebras are in Sections 3 and 4 respectively.

1. Definitions and properties

Definition 111 A semiring is a binary system (H, +, x) such that (X, +) is an Abelian
monoid(identity 0), (K, x) is a monoid(identity 1), x distributes over +,0xh = hx0 =0
for all h € H, and 1 # 0.
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Definition 2 A semiring H is called antinegative commutative if 0 is the only element
to have an additive inverse and (H, X) is abelian.

Obviously, all rings with unity are semirings but no such ring is antinegative. Algebraic
items such that unit and zero—divisor of semirings, and linearty and invertibility of linear
opertors are as in rings.

Let S be an antinegative commutative semiring, and let p,(S) denotes the set of all
n X n matrices over S. We denote by O,,, I,, and J,, the zero matrix, the identity matrix
and the the matrix of all entries 1 in u,(S) respectively.

For X,Y € pn(B), wesay Y > X or X <Y if y;; = 0 implies z;; = 0 for all 7,5. We
define X\Y to be the matrix Z = (z;;) € pn(B) such that z;; = 1 if and only if z;; = 1
and y;; = 0 for all 7, 5.

The number of nonzero entries in a matrix A is denoted | A |. A zero-one matrix are
called a cell if | A |= 1. If the nonzero entry occurs in row 7 and column j, we denote the
cell by E;;. When 7 # j, we say E;; is an off-diagonal cell; E;; is a diagonal cell. Two
cells are collinear if they are in the same row or column.

We denote the Hadamard product of A and B in u,(S) by Ao B. Thatis C = Ao B if
and only if ¢;; = a;;b;; for all  and j. For M € u,(S), the scaling operators Ly, induced
by M, is defined by Lps : A — M o A.

We denote by A% the M-P inverse of A € u,(S) which is the solution of the equations:

AXA=A, XAX =X, (AX)T = AX, (XA)T = X4,

where AT the transpose of A. Obviously, if At exists, then it is unique. When S = B,
the following property is showed in [8].

Property 1 Suppose X € pu,(B). If X* exists, then Xt = XT.

We say that a linear operator L on u,(S) strongly preserves M-P inverses of matrices
if [L(A)]" exists and [L(A4)]" = L(A") if and only if A € p,(S) has a M-P inverse A*.
We denote by R,.(S) the semigroup of all linear operators that preserve M—P inverses of
matrices. If I € R,,(S), then

Property 2 L(C) # O, for every cell C.

Proof Suppose L(D) = O, for some cell D. Then L(D)* = L(D), and hence D* = D.
Further D is a diagonal cell. Let F be a cell which is distinct to D and collinear to D.
Then L(F + D) = L(F) = L(FT)*, and hence, D + F = (FT)*, an imposibility.

Definition 3 We say that a linear operator L : X — PX P! on p,(S) is permutation
similarity if and only if P is a permutation.

2. The result on two-element Boolean algebra
In this section, we assume that $ = B and L € R,,(B).
Lemma 2.1 If C is a cell, then L(C) is a cell.
Proof It follows from Property 2 that L(C) # O,. Suppose L(C) > F + G for some
Fand G and L(J,) = F+ G+ Wy +--- + Wy, where F, G and W; (i = 1,2,---,k)
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are multually distinct. Then k¥ < n? — 2, and hence | L(J,) \ L(C) |< k < n%? — 2. Let
L(D;) > W; (i =1,2,---k)and D = C + Dy + -+ + Dg. Then L(D) > L(J,). On the
other hand, L(D) < L(J,) is obvious. Hence L(D) = L(J,,). Since | D |[< k+1 < n? -1,
we can assume W < (J, \ D) for some cell W. Thus L(J, \ W) = L(J,,). Again applying
Jt = Jn, we have L(J,)* = L(J,), and hence L(J, \ W) = L(J,)*. From which, it
follows that J;} = J, \ W, an imposibility.

Lemma 2.2 L is a bijective from the set of all cells to itself.

Proof From Lemma 2.1, we only need to prove that L(F) # L(G) for any distinct F and
G. Suppose L(F) = L(G). Then L(FT) = L(F)* = L(G)* from Property 1, and thus
FT = Gt = GT. Hence F = G, am impossibility.

Lemma 2.3 There exists a permutation matrix P € p,(B) such that
PL(E;)P~' = E;, Vi.
Proof Suppose C is a diagonal cell. Then C* = C, and hence L(C)* = L(C). Applying

Lemmas 2.1 and 2.2, we can prove the lemma.
Lemma 2.4 L(C)T = L(C7T) for any cell C.
Proof It is obvious from Lemma 2.1 and Property 1.

Theorem 2.1 The semigroup X, (B) is generated by transposition and the permutation
similarty operators.

Proof When n = 2, the theorem follows from Lemmas 2.2 and 2.3. When n > 3, it
follows from Lemma 2.3 that there exists a permutation matrix P € p,(B) such that
PL(E;)P! = Ey, Vi.

For any distinct ¢ and j, we can assume that PL(E;;)P~! = E,;, and PL(E;)P~! =
Ey,, for some distinct m and k from Lemmas 2.2 and 2.4.

Suppose m # i,j. Let A = E;; + E;; + E,p. Then L(A)T = L(A) from At = A, and
hence (Enk + Exm + Emm)® = (Emk + Ekm + Emm). By a direct computation, we have
1 = 0, an impossibility. Hence m = 7 or j. Similarly, ¥ = 7 or j. Noting m # k, we have
(m, k) = (i,) or (m, k) = (3,5).

Now we prove that PL(E;;)P~! and PL(E;)P~! are collinear for any multually
distinct 4, j and k. Otherwise, without loss of generality, let PL(E;;)P~! = E;; and
PL(Ey)P~! = Ej;. Then PL(E;)P7! = ;i and PL(Ey;)P™! = E; from Lemma
24. Let V = E; + Eij + Ey. Then L(VT) = L(V)* from VT = V*, and hence
L(V) = L(V)L(VT)L(V). Comparing the correspond entries of two sides, we have 1 = 0,
an impossibility. The theorem follows from the arbitrarity of 7, j and k.

3. Results on some antinegative commutative semirings hving no zero
divisiors

In this section, we assume that S is a antinegative commutative semiring having no
zero divisors.
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For A = (a;;) € pn(S), we write A = ((ai;)) € pn(B), where ¢is a map from S to B

defined by
1 if 0
1/)((1):{0 £ 270 vaes.

Lemma 3.1 If L : 4, (S) = pn(S) is a linear operator, let L be the operator on ,(B)

defined by L : E;; = L(E;;), Vi,j for all i and j. Then L(A) = L(4), VA € p,(S).

Remark 1 If S have zero divisors(i.e., ab = 0 for some a,b € 5), let T be a linear
operator on y,,(S) defined by

o bEy, i=j=1 o
T(E: )_{ 0,, otherwise ’ Vi, J.

Choosing A = aEj;, we have T(A) = O, # E1; = T(A), and hence the restraction of S

has not zero divisors is necessary in Lemma 3.1.

Theorem 3.1 The semigroup R, (S) is generated by transpose, the permutation similarty
operators and the scale operator Lys, where m;jmj; = 1 for all i and j.

Proof Suppose L € R,(S). Then there exist a permutation matrix P such that for any
iand j (i) L(E;;) = PE;;P! or (ii) L(E;;) = PE;;P~! holds from Theorem 2.1.

Suppose (i) holds. Then L(E;;) = L(E;;) = PE;; P~! from Lemma 3.1. Thus L(E;;) =
m;;PE;; P! for some m;; € S. Applying E,‘; = Ej;, we obtain L(E;;)* = L(Ej;), and
hence

(mijPE;jP—l)(mjiPEjiP_l )(m,;jPE,'jP-l) = m,'jPEijP_l .

Comparing the correspond elements of two sides, we have mfjmj,- = m;j, and hence

L(Ej')+ = L(E,'_.,') = L(m,;jmjiE,-j). Further E;; = m,-jmj,-Eij. Since E;; is unique, it,
follows that m;;m;; = 1. Let M = (m;;). Then L is generated by the permutation
similarty operators and the scale operator Ls and m;;m;; = 1 for all 7 and j.

2

1 y

When (ii) holds. The proof is similar.
Remark 2 The inverse of Theorem 3.1 is error. e.g.,, Let $ = RY, M = (
). Then At = B. But Lp(4)" # Lm(B) (ie.,

D et

0

A= 0

andB:(

11
0 0
LyERL(RY)).

Corollary 3.1 If 1 is unique unit in S, then the semigroup R,(S) is generated by
transposition and the permutation similarty operators.

Remark 3 1 is unique unit in A (including the fuzzy semiring and Z%).

Remark 4 If every number of S is idempotent, then 1 is unique unit in S. In fact, for
every unit a € S, we have aa™! = 1, and hence aa"la™?
we have aa™! = a~!. Thus a = 1.

= a~!. Applying a~! idempotent,
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Let P is a subring with 1 of the real number ring R. We denote by P7T the set
{z € P|z > 0}. Obviously, Pt is an antinegative commutative semiring having no zero
divisors.

Lemma 3.2 Suppose k is a prime number. Then k® = a® + % 4 ¢? for some integers a,
b and ¢ with a,b > 0.

Proof If k¥ = 2, the lemma follows by letting a = 8 = 1 and ¢ = 0; If k¥ # 2, then
k = 1,3(mod 4). Thus k> = 1,3(mod 8) and k® can not be dividen by 4. From [9,
TH4], we have k® = a? 4 b2 4 c2, where a,b,c are integers. Obviously, nonzero elements
in {a,b,c} have at least two. Without loss of generality, we assume a,b > 0.

Theorem 3.2 If there exists a positive integer k (k > 1) such that k is an unit in Pt
and n > 3, then the semigroup X,,(P™) is generated by transposition and the permutation
similarty operators.

Proof From Theorem 3.1, we only need to prove that Ly = Ly, .

i) Suppose k is prime. Then k3 = a2 + b% 4 ¢ for some integers a,b,c with a,b > 0
from Lemma 3.2. Let G = aEij + bEij + cEim. Then Ly (G)* = (k%) Lps(GT) from
Gt = (k*)"'GT, and hence [(¥*) 7 (M o GT)(M o G)]T = (k%) (M o GT)(M o G). By
a direct computation we have m;; = mj;. Again applying m;;m;; = 1, we obtain m;; =
mj; — 1 (i.e., LM = Ljn).

ii) If k is not prime, then k = ky ---k,, where kq,---,k, are prime. Obvioysly, k; is
an unit in P*. This is the form i).

Theorem 3.3 Let k (k > 1) is as in Theorem 3.2, and k is even or can be dividen by
4m+1 for some integer m. Then N,(P ™) is generated by transposition and the permutation
similarty operators.

Proof From Theorem 3.1, we only need to prove that Las = Ly,.

i) Suppose 4m + 1|k for some integer m and k; = 4m + 1. Then k; = a2 4 4% for
some positive integers a and b from (7, pp. 127, TH3]. Let N = aE; + bE;;. Then
Lau(N)t = kJ'Lpy(NT) from N* = k7' NT, and hence, [k;(M o NT)(M o N)|T =
k7'(M o NT)(M o N). By a direct computation, we have m;; = mj;. It follows from
m;my; =1 that Lys = L, .

ii) Suppose k is even. Then 2 is an unit in P+. The conclusion follows by choosing
k1 =2 and a = b = 1 in the proof of i).

Corollary 3.2 The semigroup R,(R*)(R,.(Q%)) is generated by transposition and the
permutation similarty operators.

Proof It is obvious from Theorems 3.2 and 3.3.

Remark 5 Let Pt = {Z|m,k are antinegative integers} (n > 1). Then P} is an
antinegative commutative semiring having no zero divisors and satisfies the requirement
in Theorem 3.2. Moreover, if n is even or 4m + 1|n for some integer m, then P;} satisfies
the requirement in Theorem 3.3.
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4. The results on the finite generated Boolean algebras

Let B; be the Boolean algebra of subsets of a k—element set Ay and let o1, 02, -+,
o denote the singleton subsets of Ag. We write + for union and denote intersection by
juxtaposition. Let 1 and 0 be A, and  respectively. Obviously, By is an antinegative
commutative semiring with zero divisors.

For A € pn(Bx) and 1 < i < k, we write A; = 0;A. Obviously,

(A + B)i = A; + B;, (AB), = A;B;, (aA)i = w; Az, (AT),' = (A,')T,
for any A,B € p,(Bt), a € B, and 1 < i < k. From which, we have

Lemma 4.1 If A € pn(Bi), then AT = B if and only if A} exist and A} = B; for all
1<i<k.

For 1 < i < k, we denote by §; the Boolean algebra of subsets of ;. Obviously, 8; and
B are isophism. From Theorem 2.1, we have

Lemma 4.2 The semigroup R,(8;), V1 < i < k is generated by transposition and the
permutation similarty operators.

For L € R,(By), let
Li(Xi) = G’iL(X), VX € /,lan(Bk), 1<i<k.
Then L; € Nn(ﬂ,‘) and

k
L(X) = ZUiL(X) = }:Li(Xi), VX € pn(Br).

Lemma 4.3 L € R, (By) if and only if L; € R,(8;), V1 < i < k.

Proof The “if” part is obvious. Now we prove the “only if” part.
For fixed 1 < i < k, we choosing X;, Y; € u,(B8;) with Xt =Y. LetY; = X; =1,
k k
forallj #i, X = S, 0;X;and Y = 3 0;Y;. Then Xt =Y from I} = I, and Lemma
i=1 1=1
4.1, and hence L(X)* = L(Y). Applying lemma 4.1, we have L;(X;)* = L;(Y3).
For 1 < i < k, linear operators ©() and ) on u,(By) defined by

0% X — ;: XT + 08X, VX € pun(Br)

and

30) . X — o;PXP7 4 0fX, VX € pu(By)

respectively, where P; is a permutation matrix in g, (By), of is the complement of o; in A.
We call ©() the ith rotation operator and ®() the ith resemblance operator. Obviously,
00, 80) ¢ R,,(Bi), V1 < i < k and transposition and the permutation similarty operators
are generated by the rotation and the resemblance. Again applying Lemmas 4.2 and 4.3,
we have

Theorem 4.1 The semigroup R, (By) is generated by the rotation and the resemblance.
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