Linear Operators Strongly Preserving M-P Inverses of Matrices over Some Antinegative Commutative Semirings *

ZHANG Xian, CAO Chong-guang (Dept. of Math., Heilongjiang Univ., Harbin 150080)

Abstract: Let S be an antinegative commutative semiring having no zero divisions or finite general Boolean Algebra and $\mu_n(S)$ the set of $n \times n$ matrices over S. In this paper we characterize the structure of the semigroup $\aleph_n(S)$ of linear operators on $\mu_n(S)$ that strongly preserve the M-P inverses of matrices.

Key words: semiring; M-P inverse of matrix; linear operator.

Classification: AMS(1991) 15A09,15A04/CLC O151.21

Document code: A **Article ID:** 1000-341X(1999)03-0508-07

0. Introduction

In recent years, linear preserver problem over various algebraic structrues, including rings, fields and semirings, has been of interest to many authors (see [1]-[6]). With the development of the computer science, linear preserver problem over semirings has special important value. In this paper we character linear operators strongly preserving M-P inverses of matrices over many antinegative commutative semirings \mathcal{S} , including the two-element Boolean algebra \mathcal{B} , the chain semirings \mathcal{A} , the antinegative reals \mathcal{R}^+ , the antinegative rationals \mathcal{Q}^+ , the antinegative integers \mathcal{Z}^+ and the Boolean algebras \mathcal{B}_k of subsets of a k-element set.

Definitions and properties are given in Section 1. The results for the two-element Boolean algebra matrices are in Section 2, those for nonnegetive semirings having no zero-divisors and for the finite general Boolean algebras are in Sections 3 and 4 respectively.

1. Definitions and properties

Definition 1^[1] A semiring is a binary system $(\mathcal{H}, +, \times)$ such that $(\mathcal{H}, +)$ is an Abelian monoid(identity 0), (\mathcal{H}, \times) is a monoid(identity 1), \times distributes over +, $0 \times h = h \times 0 = 0$ for all $h \in \mathcal{H}$, and $1 \neq 0$.

*Received date: 1996-11-18

Foundation item: NNSF of China (19571019) and NSF of Heilongjiang Province

Definition 2 A semiring \mathcal{H} is called antinegative commutative if 0 is the only element to have an additive inverse and (\mathcal{H}, \times) is abelian.

Obviously, all rings with unity are semirings but no such ring is antinegative. Algebraic items such that unit and zero-divisor of semirings, and linearty and invertibility of linear opertors are as in rings.

Let S be an antinegative commutative semiring, and let $\mu_n(S)$ denotes the set of all $n \times n$ matrices over S. We denote by O_n , I_n and I_n the zero matrix, the identity matrix and the matrix of all entries 1 in $\mu_n(S)$ respectively.

For $X, Y \in \mu_n(\mathcal{B})$, we say $Y \geq X$ or $X \leq Y$ if $y_{ij} = 0$ implies $x_{ij} = 0$ for all i, j. We define $X \setminus Y$ to be the matrix $Z = (z_{ij}) \in \mu_n(\mathcal{B})$ such that $z_{ij} = 1$ if and only if $x_{ij} = 1$ and $y_{ij} = 0$ for all i, j.

The number of nonzero entries in a matrix A is denoted |A|. A zero-one matrix are called a cell if |A|=1. If the nonzero entry occurs in row i and column j, we denote the cell by E_{ij} . When $i \neq j$, we say E_{ij} is an off-diagonal cell; E_{ii} is a diagonal cell. Two cells are collinear if they are in the same row or column.

We denote the Hadamard product of A and B in $\mu_n(\mathcal{S})$ by $A \circ B$. That is $C = A \circ B$ if and only if $c_{ij} = a_{ij}b_{ij}$ for all i and j. For $M \in \mu_n(\mathcal{S})$, the scaling operators \mathbf{L}_M , induced by M, is defined by $\mathbf{L}_M : A \to M \circ A$.

We denote by A^+ the M-P inverse of $A \in \mu_n(\mathcal{S})$ which is the solution of the equations:

$$AXA = A, XAX = X, (AX)^{T} = AX, (XA)^{T} = XA,$$

where A^{T} the transpose of A. Obviously, if A^{+} exists, then it is unique. When $S = \mathcal{B}$, the following property is showed in [8].

Property 1 Suppose $X \in \mu_n(\mathcal{B})$. If X^+ exists, then $X^+ = X^T$.

We say that a linear operator L on $\mu_n(S)$ strongly preserves M-P inverses of matrices if $[L(A)]^+$ exists and $[L(A)]^+ = L(A^+)$ if and only if $A \in \mu_n(S)$ has a M-P inverse A^+ . We denote by $\aleph_n(S)$ the semigroup of all linear operators that preserve M-P inverses of matrices. If $L \in \aleph_n(S)$, then

Property 2 $L(C) \neq \bigcap_n$ for every cell C.

Proof Suppose $\mathbf{L}(D) = \bigcirc_n$ for some cell D. Then $\mathbf{L}(D)^+ = \mathbf{L}(D)$, and hence $D^+ = D$. Further D is a diagonal cell. Let F be a cell which is distinct to D and collinear to D. Then $\mathbf{L}(F+D) = \mathbf{L}(F) = \mathbf{L}(F^T)^+$, and hence, $D+F=(F^T)^+$, an imposibility.

Definition 3 We say that a linear operator $L: X \longrightarrow PXP^{-1}$ on $\mu_n(S)$ is permutation similarity if and only if P is a permutation.

2. The result on two-element Boolean algebra

In this section, we assume that S = B and $L \in \aleph_n(B)$.

Lemma 2.1 If C is a cell, then L(C) is a cell.

Proof It follows from Property 2 that $L(C) \neq O_n$. Suppose $L(C) \geq F + G$ for some F and G and $L(J_n) = F + G + W_1 + \cdots + W_k$, where F, G and W_i $(i = 1, 2, \dots, k)$

are multually distinct. Then $k \leq n^2 - 2$, and hence $| \mathbf{L}(J_n) \setminus \mathbf{L}(C) | \leq k \leq n^2 - 2$. Let $\mathbf{L}(D_i) \geq W_i$ $(i = 1, 2, \dots k)$ and $D = C + D_1 + \dots + D_k$. Then $\mathbf{L}(D) \geq \mathbf{L}(J_n)$. On the other hand, $\mathbf{L}(D) \leq \mathbf{L}(J_n)$ is obvious. Hence $\mathbf{L}(D) = \mathbf{L}(J_n)$. Since $|D| \leq k + 1 \leq n^2 - 1$, we can assume $W \leq (J_n \setminus D)$ for some cell W. Thus $\mathbf{L}(J_n \setminus W) = \mathbf{L}(J_n)$. Again applying $J_n^+ = J_n$, we have $\mathbf{L}(J_n)^+ = \mathbf{L}(J_n)$, and hence $\mathbf{L}(J_n \setminus W) = \mathbf{L}(J_n)^+$. From which, it follows that $J_n^+ = J_n \setminus W$, an imposibility.

Lemma 2.2 L is a bijective from the set of all cells to itself.

Proof From Lemma 2.1, we only need to prove that $L(F) \neq L(G)$ for any distinct F and G. Suppose L(F) = L(G). Then $L(F^T) = L(F)^+ = L(G)^+$ from Property 1, and thus $F^T = G^+ = G^T$. Hence F = G, am impossibility.

Lemma 2.3 There exists a permutation matrix $P \in \mu_n(\mathcal{B})$ such that

$$P\mathbf{L}(E_{ii})P^{-1}=E_{ii}, \quad \forall i.$$

Proof Suppose C is a diagonal cell. Then $C^+ = C$, and hence $L(C)^+ = L(C)$. Applying Lemmas 2.1 and 2.2, we can prove the lemma.

Lemma 2.4 $\mathbf{L}(C)^T = \mathbf{L}(C^T)$ for any cell C.

Proof It is obvious from Lemma 2.1 and Property 1.

Theorem 2.1 The semigroup $\aleph_n(\mathcal{B})$ is generated by transposition and the permutation similarty operators.

Proof When n=2, the theorem follows from Lemmas 2.2 and 2.3. When $n\geq 3$, it follows from Lemma 2.3 that there exists a permutation matrix $P\in \mu_n(\mathcal{B})$ such that

$$P\mathbf{L}(E_{ii})P^{-1}=E_{ii}, \ \forall i.$$

For any distinct i and j, we can assume that $PL(E_{ij})P^{-1} = E_{mk}$ and $PL(E_{ji})P^{-1} = E_{km}$ for some distinct m and k from Lemmas 2.2 and 2.4.

Suppose $m \neq i, j$. Let $A = E_{ij} + E_{ji} + E_{mm}$. Then $\mathbf{L}(A)^+ = \mathbf{L}(A)$ from $A^+ = A$, and hence $(E_{mk} + E_{km} + E_{mm})^3 = (E_{mk} + E_{km} + E_{mm})$. By a direct computation, we have 1 = 0, an impossibility. Hence m = i or j. Similarly, k = i or j. Noting $m \neq k$, we have (m, k) = (i, j) or (m, k) = (j, i).

Now we prove that $P\mathbf{L}(E_{ij})P^{-1}$ and $P\mathbf{L}(E_{ik})P^{-1}$ are collinear for any multually distinct i, j and k. Otherwise, without loss of generality, let $P\mathbf{L}(E_{ij})P^{-1} = E_{ij}$ and $P\mathbf{L}(E_{ik})P^{-1} = E_{ki}$. Then $P\mathbf{L}(E_{ji})P^{-1} = E_{ji}$ and $P\mathbf{L}(E_{ki})P^{-1} = E_{ik}$ from Lemma 2.4. Let $V = E_{ii} + E_{ij} + E_{ik}$. Then $\mathbf{L}(V^T) = \mathbf{L}(V)^+$ from $V^T = V^+$, and hence $\mathbf{L}(V) = \mathbf{L}(V)\mathbf{L}(V^T)\mathbf{L}(V)$. Comparing the correspond entries of two sides, we have 1 = 0, an impossibility. The theorem follows from the arbitrarity of i, j and k.

3. Results on some antinegative commutative semirings hving no zero divisiors

In this section, we assume that S is a antinegative commutative semiring having no zero divisors.

For $A=(a_{ij})\in \mu_n(\mathcal{S})$, we write $\overline{A}=(\psi(a_{ij}))\in \mu_n(\mathcal{B})$, where ψ is a map from \mathcal{S} to \mathcal{B} defined by

$$\psi(a) = \left\{ egin{array}{ll} 1 & ext{if} & a
eq 0 \ 0 & ext{if} & a = 0 \end{array}
ight., \quad orall a \in \mathcal{S}.$$

Lemma 3.1^[4] If $\mathbf{L} : \mu_n(\mathcal{S}) \to \mu_n(\mathcal{S})$ is a linear operator, let $\overline{\mathbf{L}}$ be the operator on $\mu_n(\mathcal{B})$ defined by $\overline{\mathbf{L}} : E_{ij} = \overline{\mathbf{L}}(E_{ij})$, $\forall i, j$ for all i and j. Then $\overline{\mathbf{L}}(A) = \overline{\mathbf{L}}(A)$, $\forall A \in \mu_n(\mathcal{S})$.

Remark 1 If S have zero divisors (i.e., ab = 0 for some $a, b \in S$), let **T** be a linear operator on $\mu_n(S)$ defined by

$$\mathbf{T}(E_{ij}) = \left\{ egin{array}{ll} bE_{11}, & i=j=1 \ O_n, & ext{otherwise} \end{array}
ight., \quad orall i,j.$$

Choosing $A = aE_{11}$, we have $\overline{\mathbf{T}(A)} = \bigcirc_n \neq E_{11} = \overline{\mathbf{T}}(\overline{A})$, and hence the restraction of S has not zero divisors is necessary in Lemma 3.1.

Theorem 3.1 The semigroup $\aleph_n(S)$ is generated by transpose, the permutation similarty operators and the scale operator \mathbf{L}_M , where $m_{ij}m_{ji}=1$ for all i and j.

Proof Suppose $\mathbf{L} \in \aleph_n(\mathcal{S})$. Then there exist a permutation matrix P such that for any i and j (i) $\overline{\mathbf{L}}(E_{ij}) = PE_{ij}P^{-1}$ or (ii) $\overline{\mathbf{L}}(E_{ij}) = PE_{ji}P^{-1}$ holds from Theorem 2.1.

Suppose (i) holds. Then $\overline{\mathbf{L}(E_{ij})} = \overline{\mathbf{L}}(E_{ij}) = PE_{ij}P^{-1}$ from Lemma 3.1. Thus $\mathbf{L}(E_{ij}) = m_{ij}PE_{ij}P^{-1}$ for some $m_{ij} \in \mathcal{S}$. Applying $E_{ij}^+ = E_{ji}$, we obtain $\mathbf{L}(E_{ij})^+ = \mathbf{L}(E_{ji})$, and hence

$$(m_{ij}PE_{ij}P^{-1})(m_{ji}PE_{ji}P^{-1})(m_{ij}PE_{ij}P^{-1}) = m_{ij}PE_{ij}P^{-1}.$$

Comparing the correspond elements of two sides, we have $m_{ij}^2 m_{ji} = m_{ij}$, and hence $\mathbf{L}(E_{ji})^+ = \mathbf{L}(E_{ij}) = \mathbf{L}(m_{ij}m_{ji}E_{ij})$. Further $E_{ji}^+ = m_{ij}m_{ji}E_{ij}$. Since E_{ji}^+ is unique, it follows that $m_{ij}m_{ji} = 1$. Let $M = (m_{ij})$. Then \mathbf{L} is generated by the permutation similarty operators and the scale operator \mathbf{L}_M and $m_{ij}m_{ji} = 1$ for all i and j.

When (ii) holds. The proof is similar.

Remark 2 The inverse of Theorem 3.1 is error. e.g., Let $S = \mathbb{R}^+$, $M = \begin{pmatrix} 1 & 2 \\ \frac{1}{2} & 1 \end{pmatrix}$,

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{pmatrix}$. Then $A^+ = B$. But $\mathbf{L}_{\mathbf{M}}(A)^+ \neq \mathbf{L}_{\mathbf{M}}(B)$ (i.e., $\mathbf{L}_{M} \in \aleph_{n}(\mathcal{R}^+)$).

Corollary 3.1 If 1 is unique unit in S, then the semigroup $\aleph_n(S)$ is generated by transposition and the permutation similarty operators.

Remark 3 1 is unique unit in A (including the fuzzy semiring and Z^+).

Remark 4 If every number of S is idempotent, then 1 is unique unit in S. In fact, for every unit $a \in S$, we have $aa^{-1} = 1$, and hence $aa^{-1}a^{-1} = a^{-1}$. Applying a^{-1} idempotent, we have $aa^{-1} = a^{-1}$. Thus a = 1.

Let \mathcal{P} is a subring with 1 of the real number ring \mathcal{R} . We denote by \mathcal{P}^+ the set $\{x \in \mathcal{P} | x \geq 0\}$. Obviously, \mathcal{P}^+ is an antinegative commutative semiring having no zero divisors.

Lemma 3.2 Suppose k is a prime number. Then $k^3 = a^2 + b^2 + c^2$ for some integers a, b and c with a, b > 0.

Proof If k = 2, the lemma follows by letting a = b = 1 and c = 0; If $k \neq 2$, then $k = 1, 3 \pmod{4}$. Thus $k^3 = 1, 3 \pmod{8}$ and k^3 can not be dividen by 4. From [9, TH4], we have $k^3 = a^2 + b^2 + c^2$, where a, b, c are integers. Obviously, nonzero elements in $\{a, b, c\}$ have at least two. Without loss of generality, we assume a, b > 0.

Theorem 3.2 If there exists a positive integer k (k > 1) such that k is an unit in \mathcal{P}^+ and $n \geq 3$, then the semigroup $\aleph_n(\mathcal{P}^+)$ is generated by transposition and the permutation similarty operators.

Proof From Theorem 3.1, we only need to prove that $L_M = L_{J_n}$.

- i) Suppose k is prime. Then $k^3 = a^2 + b^2 + c^2$ for some integers a, b, c with a, b > 0 from Lemma 3.2. Let $G = aE_{ij} + bE_{ij} + cE_{im}$. Then $\mathbf{L}_M(G)^+ = (k^3)^{-1}\mathbf{L}_M(G^T)$ from $G^+ = (k^3)^{-1}G^T$, and hence $[(k^3)^{-1}(M \circ G^T)(M \circ G)]^T = (k^3)^{-1}(M \circ G^T)(M \circ G)$. By a direct computation we have $m_{ij} = m_{ji}$. Again applying $m_{ij}m_{ji} = 1$, we obtain $m_{ij} = m_{ji} = 1$ (i.e., $\mathbf{L}_M = \mathbf{L}_{J_n}$).
- ii) If k is not prime, then $k = k_1 \cdots k_p$, where k_1, \cdots, k_p are prime. Obviously, k_1 is an unit in \mathcal{P}^+ . This is the form i).

Theorem 3.3 Let k (k > 1) is as in Theorem 3.2, and k is even or can be dividen by 4m+1 for some integer m. Then $\aleph_2(\mathcal{P}^+)$ is generated by transposition and the permutation similarty operators.

Proof From Theorem 3.1, we only need to prove that $L_M = L_{J_2}$.

- i) Suppose 4m+1|k for some integer m and $k_1=4m+1$. Then $k_1=a^2+b^2$ for some positive integers a and b from [7, pp. 127, TH3]. Let $N=aE_{ii}+bE_{ij}$. Then $\mathbf{L}_M(N)^+=k_1^{-1}\mathbf{L}_M(N^{\mathrm{T}})$ from $N^+=k_1^{-1}N^{\mathrm{T}}$, and hence, $[k_1^{-1}(M\circ N^{\mathrm{T}})(M\circ N)]^T=k_1^{-1}(M\circ N^{\mathrm{T}})(M\circ N)$. By a direct computation, we have $m_{ij}=m_{ji}$. It follows from $m_{ij}m_{ji}=1$ that $\mathbf{L}_M=\mathbf{L}_{J_2}$.
- ii) Suppose k is even. Then 2 is an unit in \mathcal{P}^+ . The conclusion follows by choosing $k_1 = 2$ and a = b = 1 in the proof of i).

Corollary 3.2 The semigroup $\aleph_n(\mathcal{R}^+)(\aleph_n(\mathcal{Q}^+))$ is generated by transposition and the permutation similarty operators.

Proof It is obvious from Theorems 3.2 and 3.3.

Remark 5 Let $\mathcal{P}_n^+ = \{\frac{m}{n^k}|m,k \text{ are antinegative integers}\}\ (n>1)$. Then \mathcal{P}_n^+ is an antinegative commutative semiring having no zero divisors and satisfies the requirement in Theorem 3.2. Moreover, if n is even or 4m+1|n for some integer m, then \mathcal{P}_n^+ satisfies the requirement in Theorem 3.3.

4. The results on the finite generated Boolean algebras

Let \mathcal{B}_k be the Boolean algebra of subsets of a k-element set Δ_k and let $\sigma_1, \sigma_2, \dots, \sigma_k$ denote the singleton subsets of Δ_k . We write + for union and denote intersection by juxtaposition. Let 1 and 0 be Δ_k and \emptyset respectively. Obviously, \mathcal{B}_k is an antinegative commutative semiring with zero divisors.

For $A \in \mu_n(\mathcal{B}_k)$ and $1 \leq i \leq k$, we write $A_i = \sigma_i A$. Obviously,

$$(A + B)_i = A_i + B_i, (AB)_i = A_i B_i, (\alpha A)_i = \alpha_i A_i, (A^T)_i = (A_i)^T,$$

for any $A, B \in \mu_n(\mathcal{B}_k)$, $\alpha \in \mathcal{B}_k$, and $1 \leq i \leq k$. From which, we have

Lemma 4.1 If $A \in \mu_n(\mathcal{B}_k)$, then $A^+ = B$ if and only if A_i^+ exist and $A_i^+ = B_i$ for all $1 \le i \le k$.

For $1 \le i \le k$, we denote by β_i the Boolean algebra of subsets of σ_i . Obviously, β_i and \mathcal{B} are isophism. From Theorem 2.1, we have

Lemma 4.2 The semigroup $\aleph_n(\beta_i)$, $\forall 1 \leq i \leq k$ is generated by transposition and the permutation similarty operators.

For $\mathbf{L} \in \aleph_n(\mathcal{B}_k)$, let

$$\mathbf{L}_i(X_i) = \sigma_i \mathbf{L}(X), \quad \forall X \in \mu_n(\mathcal{B}_k), \quad 1 \leq i \leq k.$$

Then $\mathbf{L}_i \in \aleph_n(\beta_i)$ and

$$\mathbf{L}(X) = \sum_{i=1}^k \sigma_i \mathbf{L}(X) = \sum_{i=1}^k \mathbf{L}_i(X_i), \quad orall X \in \mu_n(\mathcal{B}_k).$$

Lemma 4.3 $\mathbf{L} \in \aleph_n(\mathcal{B}_k)$ if and only if $\mathbf{L}_i \in \aleph_n(\beta_i)$, $\forall 1 \leq i \leq k$.

Proof The "if" part is obvious. Now we prove the "only if" part.

For fixed $1 \leq i \leq k$, we choosing X_i , $Y_i \in \mu_n(\beta_i)$ with $X_i^+ = Y_i$. Let $Y_j = X_j = I_n$ for all $j \neq i$, $X = \sum_{i=1}^k \sigma_i X_i$ and $Y = \sum_{i=1}^k \sigma_i Y_i$. Then $X^+ = Y$ from $I_n^+ = I_n$ and Lemma 4.1, and hence $\mathbf{L}(X)^+ = \mathbf{L}(Y)$. Applying lemma 4.1, we have $\mathbf{L}_i(X_i)^+ = \mathbf{L}_i(Y_i)$.

For $1 \leq i \leq k$, linear operators $\Theta^{(i)}$ and $\Phi^{(i)}$ on $\mu_n(\mathcal{B}_k)$ defined by

$$\Theta^{(i)}: X \longrightarrow \sigma_i X^T + \sigma_i^c X, \quad orall X \in \mu_n(\mathcal{B}_k)$$

and

$$\Phi^{(i)}: X \longrightarrow \sigma_i P_i X P_i^{-1} + \sigma_i^c X, \quad \forall X \in \mu_n(\mathcal{B}_k)$$

respectively, where P_i is a permutation matrix in $\mu_n(\mathcal{B}_k)$, σ_i^c is the complement of σ_i in \triangle_k . We call $\Theta^{(i)}$ the *i*th rotation operator and $\Phi^{(i)}$ the *i*th resemblance operator. Obviously, $\Theta^{(i)}$, $\Phi^{(i)} \in \aleph_n(\mathcal{B}_k)$, $\forall 1 \leq i \leq k$ and transposition and the permutation similarty operators are generated by the rotation and the resemblance. Again applying Lemmas 4.2 and 4.3, we have

Theorem 4.1 The semigroup $\aleph_n(\mathcal{B}_k)$ is generated by the rotation and the resemblance.

References

- [1] Beasley L B and Lee S G. Linear operators strongly preserving r-cyclic matrices over semirings [J]. Linear and Multi. Alg., 1993, 35: 325-337.
- [2] Beasley L B and Lee S G. Linear operators strongly preserving r-potent matrices over semirings [J]. Linear Alg. Appl., 1992, 162-164: 589-599.
- [3] Beasley L B and Pullman N J. Linear operators preserving idempotent matrices over fields [J]. Linear Alg. Appl., 1991, 146: 7-20.
- [4] Beasley L B and Pullman N J. Linear operators strongly preserving idempotent matrices over semirings [J]. Linear Alg. Appl., 1992, 160: 217-229.
- [5] Cao Chongguang. Linear operators that preserve M-P inverses of matrices [J]. Northeastern Math. J., 1993, 9(2): 255-260.
- [6] Lim G H. Linear preservers on powers of matrices [J]. Linear Alg. Appl., 1992, 162-164: 615-626.
- [7] Ke Zhao and Sun Qi. A course in arithmetic [J]. Higher Education Inc, 1986.
- [8] Prasada Rao P S S N V and Bhaskara Rao K P S. On generalized inverses of boolean matrices [J]. Linear Alg. Appl., 1975, 11: 135-153.
- [9] Serre J P. A Course in Arithmetic [M]. Springer-Verlag New York Inc. 1973.

某些非负交换半环上强保持矩阵 M-P 逆的线性算子

张 显, 曹重光 (黑龙江大学数学系, 哈尔滨 150080)

摘要:设 S 是无零因子的非负交换半环或者有限生成布尔代数, $\mu_n(S)$ 记 S 上的矩阵集合,本文确定了 $\mu_n(S)$ 上的强保持矩阵 M-P 逆的线性算子半群 $\aleph_n(S)$ 的结构,