Graded FS-Rings *

CHEN Jian-hua

(Dept. of Math., Teachers' College, Yangzhou Univ., Jiangsu 225002)

Abstract: In this paper, we introduce the notation of graded FS-module of the graded module over a group G-graded ring and obtain some characterization involving graded maximal graded left ideal for a graded FS-ring and some equivalent conditions between the ring R and group ring RG, the graded ring R and group ring of graded ring R[G].

Key words: graded ring; graded FS-ring; graded FS-module; group ring of (graded) ring.

Classification: AMS(1991) 16W50/CLC O153.3

Document code: A **Article ID:** 1000-341X(1999)03-0515-06

1. Notations and Preliminaries

In this paper, all rings have a unitary and all modules are unitary. If R is a ring, by an R-module we will mean a left R-module, and we will denote the category of R-modules by R-mod. If G is a group and $R = \bigoplus_{\sigma \in G} R_{\sigma}$ is a graded ring of type G, the category of graded left R-modules will be denoted by R-gr. If $M = \bigoplus_{\sigma \in G} M_{\sigma}$, $N = \bigoplus_{\sigma \in G} N_{\sigma} \in R$ -gr, $\text{Hom}_{R-gr}(M,N)$ is the set morphisms in the category R-gr from M to N, i.e. $\text{Hom}_{R-gr}(M,N) = \{f: M \to N | f \text{ is } R\text{-linear and } f(M_{\sigma}) \subseteq N_{\sigma}, \forall \sigma \in G\}$

If $R = \bigoplus_{\sigma \in G} R_{\sigma}$ is a graded ring, we say that R is a strongly graded ring if $R_{\sigma}R_{\tau} = R_{\sigma\tau}$ for any $\sigma, \tau \in G$. It is well known [1] that R is a strongly graded ring if and only if $R_{\sigma}R_{\sigma^{-1}} = R_e$ for any $\sigma \in G$. (e is the identity of the group G). If R is graded by a finite group G, the smash product, $R \# G^*$, is a free right and left R-module with basis $\{P_{\sigma}|\sigma \in G\}$ and multiplication determined by $(rP_{\sigma})(sP_{\tau}) = rs_{\sigma\tau^{-1}}P_{\tau}$, where $s_{\sigma\tau^{-1}}$ is the $\sigma\tau^{-1}$ component of s.

Let R be a (graded) ring. The left and right annihilators of a subset X of R are written l(X) and r(X) respectively. The (graded) socle of a (graded) left R-module M is written (gr-Soc(M)) Soc(M).

We recall that a study of rings with flat left socle and be called left FS-rings by Liu Zhongkui^[2]. Some equivalent conditions of such rings are given in [2], In the same paper,

^{*}Received date: 1996-09-30

Foundation item: Supported by the National Natural Science Foundation of China (19671070) Biography: CHEN Jianhua (1963-), male, born in Rugao county, Jiangsu province. M.Sc.

it was proved that R is a left FS-ring if and only if S is a left FS-ring, where S is a excellent extension of R.

In this paper we consider graded rings with graded flat graded left socle. We call such graded rings to be graded left FS-rings. Some equivalent conditions of such graded rings are given in section 2 in terms of either the graded maximal graded left ideals of R or graded left R-modules with graded flat graded socle. In section 3 we consider group rings of ring R and group rings of graded ring R with (graded) flat (graded) left socle. We show that if R is a ring, G is finite group and $|G|^{-1} \in R$, then R is a FS-ring if and only if RG is a graded FS-ring, if R is a graded ring, G is a finite group and $|G|^{-1} \in R$, then R is a (graded) FS-ring if and only if R[G] is a (graded) FS-ring.

2. Properties and Characterizations

By analogy with left FS-modules and left FS-rings, we give the following definiton.

Definition 1 A graded left R-module M is called a graded FS-module if every graded simple submodule is graded flat.

Definition 2 A graded ring R is called a graded left (right) FS-ring if $R(R_R)$ is a graded FS-module.

Lemma 2.1^[1] Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a strongly graded ring. Then the functor $R \otimes_{Re} : R_{e}$ -mod $\rightarrow R$ - gr given by $M \rightarrow R \otimes_{R_{e}} M$ where $M \in R_{e}$ -mod and $R \otimes_{R_{e}} M$ is a graded R-module by the grading $(R \otimes_{R_{e}} M)_{\sigma} = R_{\sigma} \otimes_{Re} M$, is an equivalence, Its inverse is the functor $(\cdot)_{e} : R$ - gr $\rightarrow R_{e}$ -mod given by $M \rightarrow M_{e}$ where $M \in R$ -gr and $M = \bigoplus_{\sigma \in G} M_{\sigma}$.

Theorem 2.2 Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ is a stronly G-graded ring, $M = \bigoplus_{\sigma \in G} M_{\sigma} \in R$ -gr. Then M is a graded FS-module if and only if M is an FS- R_e -module. In particular, R is a graded FS-ring if and only if R_e is an FS-ring.

Proof Let M be an FS- R_e -module. If $N=\bigoplus_{\sigma\in G}N_{\sigma}$ is a graded simple submodule of M, then $N_{\sigma}=0$ or N_{σ} is a simple R_e -module. Thus N_{σ} is a flat R_e -module by hypothesis, in particular, N_e is a flat R_e -module. By Lemma 2.1 N is a graded flat module, and so M is a graded flat module. Similarly the necessity can be proved by Lemma 2.1.

It is clear the graded PS-modules, (see[4]), are graded FS-modules, and graded left PS-rings are graded left FS-rings.

Example 1 Let R be a graded von-Neumann reguler ring. Then R is a graded FS-ring.

Example 2 Let R be a FS-ring. Then the group ring RG is a graded FS-ring by theorem 2.2.

Corollary 2.3 Let R be a strongly graded ring, $|G|^{-1} \in R$, then the following are equivalent.

- (1) R_e is an FS-ring.
- (2) R is a gr-FS-ring.
- (3) $R \# G^*$ is an FS-ring.

In order to give characterizations of graded left FS-rings, now we give following lemmas.

Lemma 2.4 Let R be a G-graded ring, $B \in gr$ -R and an exact sequence $0 \to K \xrightarrow{i} F \xrightarrow{f} B \to 0$, in which F is gr-flat. then B is graded flat if and only if $K \cap IF = IK$ for each graded right ideal I of R.

Proof Because the functor \otimes_R is right exact, so we have the commutative diagram

Where α_1, α_2 and α_3 are clear. As B is a graded flat and $0 \to I \xrightarrow{i} R$, so $0 \to I \otimes_R B \to R \otimes_R B \simeq B$. It follows that α_3 is an isomorphism. so is α_2 . Since α_1 is surjective, therefore $0 \to IK \to IF \to IB \to 0$ is a exact sequence. and

$$IF/IK \cong IF + K/K \cong IF/IF \cap K$$
.

It is easy to see $IK = IF \cap K$. The proof of sufficiency is similar to without grading. A graded module F is called a graded free if F has a basis of homogeneous elements, or equivalently $F \cong \bigoplus_{\sigma \in S} R(\sigma)$, where S is a subset of G.

Lemma 2.5 Let R be a G-graded ring, $B \in \operatorname{gr-}R$ and an exact sequence $0 \to K \xrightarrow{i} F \xrightarrow{f} B \to 0$. In which F is graded free. Suppose $\{x_j | j \in \Gamma, x_j \in h(F)\}$ is a basic of F, If $v \in h(k)$, say $v = r_1x_{j_1} + r_2x_{j_2} + \cdots + r_tx_{j_t}(v_i \in h(R)), I(v)$ denote the graded right ideal generate by $r_1, r_2 \cdots r_t$, then B is graded flat if and only if $v \in I(v)K$ for all $v \in K$.

Proof Let B be a graded flat module. Then $IF \cap K = IK$ by lemma 2.4. If $v = r_1x_{j_1} + r_2r_{j_2} + \cdots + r_tx_{j_t} \in K$ and $\{r_1, r_2, \cdots, r_t\} \subseteq I(v)$, so $v \in I(v)F$, Since $I(v) = r_1R + r_2R + \cdots + r_tR$, $I(v)K = r_1RK + r_2RK + \cdots + r_tRK = r_1K + r_2K + \cdots + r_tK$, therefore there exist $y_1, y_2 \cdots y_t \in h(K)$ such that $v = r_1y_1 + r_2y_2 + \cdots + r_ty_t$. Thus $v \in I(v)K$.

To the contrary, suppose $v \in I(v)K$ for all $v \in K$, let I be a graded right ideal of R. It is easy to see, $IK \subseteq K \cap IF$. If $v \in K \cap IF$, say $v = s_1x_{j_1} + s_2x_{j_2} + \cdots + s_nx_{j_n}$, where $s_1, s_2, \cdots s_n \in I$ and $I(v) \subseteq I$, so $v \in IK$. Thus $K \cap IF = IF$. B is a graded flat module by Lemma 2.4.

Lemma 2.6 Let R be a G-graded ring, I be a graded left ideal of R. Then I is graded direct summand if and only if there exist $f \in R_e$, $f^2 = f$, such that I = Rf.

The next result gives several characterizations of graded left FS-rings in terms of graded left FS-modules, or graded maximal graded left ideals, or all graded simple graded left R-modules.

Theorem 2.7 The following are equivalent for a graded ring R by group G.

- (1) R is a graded left FS-ring.
- (2) Gr-Soc (RR) is graded flat.
- (3) R has a faithful graded left FS-module.

- (4) If L is a maximal graded left ideal of R then either r(L) = 0 or $a \in aL$ for every $a \in L \cap h(R)$.
- (5) If L is a graded essential maximal graded left ideal of R then either r(L) = 0 or $a \in aL$ for every $a \in L \cap h(R)$.
- (6) Every graded simple graded left R-module $_RM$ is either graded flat or $\operatorname{Hom}_{R-gr}(M,R) = 0$.

Proof The equivalence of (1) and (4) is trival.

- (1) \Leftrightarrow (2) By proposition 1.2.18 ([1]), a graded left R module is graded flat if and only if M is flat. We have $\bigoplus_{\alpha\in\Gamma}M_{\alpha}$ is graded flat if and only if M_{α} is flat for all $\alpha\in\Gamma$.
 - $(1) \Rightarrow (3)$ It is clear.
- $(3)\Rightarrow (4)$ By analogy with the proof of Theorem of [4], let $_RM$ be a faithful graded FS-module and let L be a maximal graded left ideal. If $r(L)\neq 0$ write T=r(L) so that LT=0. On the other hand $RT\neq 0$, so $RTM\neq 0$ by hypothesis, say $Rm_{\sigma}\neq 0$ where $m_{\sigma}\in TM\cap h(M)$ and $\deg(m_{\sigma})=\sigma$. Thus $L\subseteq L(m_{\sigma})\neq R$, so $L=l(m_{\sigma})$. Definition:

$$g:R\to Rm_{\sigma}$$

$$r_{\sigma}
ightarrow r_{ au} m_{\sigma}$$

then $g \in \text{Hom}(R, Rm_{\sigma})_{\sigma}$, i.e. $g \in \text{Hom}_{R-g_{\tau}}(R, Rm_{\sigma}(\sigma^{-1}))$ and $R/L \cong Rm_{\sigma}(\sigma^{-1})$. Then R/L is graded flat by hypothesis and Lemma 2.5. Thus $a \in aL$ for every $a \in L \cap h(R)$.

- $(4) \Rightarrow (5)$ It is clear.
- $(5)\Rightarrow (1)$ Let $a\in R_{\sigma}$ and Ra be a minimum graded left ideal of R. Definition:

$$q:R\to Ra$$

$$r_{ au}
ightarrow r_{ au} a$$

then $g \in \operatorname{Hom}(R,Ra)_{\sigma}$, that is $g \in \operatorname{Hom}_{R-gr}(R,Ra(\sigma^{-1}))$, so $Ra \cong R/L$ in gr-R, where L=L(a) is a maximal graded left ideal of R. If L is not graded essential then L=Rf for some $f^2=f\in R_e$ by Lemma 2.6, thus $Ra(\sigma^{-1})\cong R(1-f)$, which implies that $Ra(\sigma^{-1})$ is graded projective. Now, suppose that L is a graded essential maximal graded left ideal. Assume that $r(L)\neq 0$. Then $a\in aL$ for every $a\in L\cap h(R)$, Thus $R/L\cong Ra(\sigma^{-1})$ is a graded flat left R-module. Now suppose that r(L)=0. Set $h\in \operatorname{Hom}_{R-gr}(Ra,R)$ if $(a)h=b\in R_{\sigma}$, then Lb=L((a)h)=(La)h=(0)h=0, it follows that a=0. So we have proved that every graded minimum graded left ideal of R is flat.

Corollary 2.8 Suppose that R is a graded left FS-module. Then, (1) for every graded essential maximal graded left ideal L of R, either 1(L) = 0 or r(L) = 0.

- (2) for every maximal graded left ideal L of R, either l(L) = 0 or r(L) = fR where $f^2 = f \in R_e$.
- **Proof** (1) Let L be a graded essential maximal graded left ideal. Assume that $l(L) \neq 0$, the $L \cap l(L) \neq 0$. Choose $0 \neq a \in L \cap l(L)$, if $v(L) \neq 0$, then, by Theorem 2.7 $b \in bL$ for every $b \in L$. Thus $a \in aL$ which implies a = 0, a contradiction. Therefore we have r(L) = 0.

(2) By Lemma 2.6.

3. Group Rings RG and R[G]

In this section we consider group rings with (graded) flat left socle. Let R be a ring and G be a finite group, as is known to all, group ring RG is strongly graded ring of type G. First of all, we have the following.

Theorem 3.1 Let R be a graded ring by finite group $G.|G|^{-1} \in R$, then the following are equivalent.

- (1) R is an FS-ring.
- (2) RG is an FS-ring.
- (3) RG is a gr-FS-ring.

Proof $(1)\Leftrightarrow (2)$ By Corollary $3.5^{[2]}$.

 $(1)\Leftrightarrow (3)$ By Theorem 2.2.

By Remark 3.3 [2] and [4] we have following.

Corollary 3.2 Let R be a graded ring by finite group $G.|G|^{-1} \in R$, then the following are equivalent.

- (1) R is a PS-ring.
- (2) RG is a PS-ring.
- (3) RG is a graded PS-ring.

According to C. Nastasescu^[6], if $R = \bigoplus_{\sigma \in G} R_{\sigma}$ is a graded ring of type G, he denote by R[G] the left free R-module with the basis $\{\sigma | \sigma \in G\}$, i.e. $R[G] = \{\sum_{g \in G} \lambda_g g | \lambda_g \in R\}$. For the elements $\lambda_{\sigma} \tau$ and $\lambda_{\sigma'\tau'}$ where $\lambda_{\sigma} \in R_{\sigma}$, $\lambda_{\sigma'} \in R_{\sigma'}$, he define their product by

$$(\lambda_{\sigma} au)(\lambda_{\sigma'} au')=\lambda_{\sigma}\lambda_{\sigma'}(\sigma'^{-1} au\sigma' au').$$

R[G] is called the group rings of graded rings. If define for every $\sigma \in G$, $(R[G])_{\sigma} = \sum_{\lambda\mu=\sigma} R_{\lambda}\mu = \sum_{\tau\in G} R_{\sigma\tau^{-1}}\tau = \bigoplus_{\tau\in G} R_{\sigma\tau^{-1}}\tau$ the R[G] is a G-graded ring, and $(R[G])_e = \sum_{\sigma\in G} R_{\sigma^{-1}}\sigma$. The following lemma appeared in [6].

Lemma 3.3 With the above notations, we have

- (1) R[G] is a strongly graded ring with the grading $\{(R[G])_{\sigma}, \sigma \in G\}$.
- (2) $\varphi: R \to (R[G])_e, \varphi(\sum_{\sigma \in G} \lambda_{\sigma}) = \sum_{\sigma \in G} \lambda_{\sigma} \sigma^{-1}$, where $\lambda_{\sigma} \in R$, is a ring isomorphism.
- (3) If I is a graded left ideal of R, then I[G] is a graded left ideal of R[G] and $I[G] \cap (R[G])_e = \varphi(I)$.

Theorem 3.4 Let R be a graded ring by finite group $G, |G|^{-1} \in R$. Then

- (1) R is an FS-ring if and only if R[G] is an FS-ring.
- (2) R is an FS-ring if and only if R[G] is an gr-FS-ring.
- (3) If R is strongly graded, R is a gr-FS-ring if and only if R[G] is a gr-FS-ring.

Proof (1) In fact R[G] is a crossed product (see[1]). By [2] corollary 3.5 it is clear.

(2) By lemma 3.3, $\varphi: R \to (R[G])_e$, $\varphi(\sum_{\sigma \in G} \lambda_{\sigma}) = \bigoplus_{\sigma \in G} \lambda_{\sigma} \sigma^{-1}$ is a ring isomorphism. On the other hand, it is easy to see that every $g \in G$ commute with any element of $(R[G])_e$

and therefore R[G] is the group ring $(R[G])_e$ by the group G in the classical sense. Thus the result follows from Theorem 2.2 and Lemma 3.3.

(3) Since $(R[G])_e = \bigoplus_{\sigma \in G} (R_{\sigma}\sigma^{-1}), (R_{\tau} = \tau^{-1}) \subseteq R_{\sigma\tau}(\sigma\tau)^{-1}$, so $(R[G])_e$ is a graded ring of type G. Thus φ is a graded ring isomorphism. If R is strongly graded, then R is an FS-ring if and only if R is a gr-FS-ring.

Acknowledgements Author is grateful to professer Fan Hongjin and professor Cai Chuanren for their help.

References

- Nastasescu C and Van Oystaeyen F. Graded Ring Theory [M]. North-Holland, Amster-dam, 1982.
- [2] Liu Zhongkui. Rings with flat left socle [J]. Comm. Algebra, 1995, 23(5): 1645-1656.
- [3] Nicholson W K, Watters J F. Rings with projective socle [J]. Proc. Amer. Math. Soc., 1988, 3(102): 433-450.
- [4] Chen Qinghua. Graded PS-Rings [J]. J. of Fujian Normal University(Natual Science), 1994, 10(2): 1-5.
- [5] Lin Zibing. Homological Algebra [M]. Northeast Normal Universuty, 1991.
- [6] Nastasescu C. Group rings of graded rings [J]. Applications, J. of pure and Applied algebra, North-Holland, 1984, 33: 313-335.

分次 FS- 环

陈 建 华 (扬州大学师范学院数学系, 江苏 225002)

摘 要:本文引进群分次环上分次模的分次 FS-模的概念,利用分次极大分次左理想给出分次 FS-环的几个刻画,得到了环 R 和群环 RG, 分次环 R 和分次环的群环 R[G] 间的几个等价条件.