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Abstract: In this paper an error estimate is derived, if A € [0, 1], for the lacunary
quartic C2-spline interpolant which interpolates the first derivative of a given smooth
function at the mesh points and as well as its second derivative at an arbitrary interior
point between consecutive knots, if the mesh is uniform. Moreover, an application to
quadratures is also presented.
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1. Introduction

Interpolation by quartic splines has been investigated by several authors (cf. [2], [3]).
It was proved (see [4]) that given the real numbers: {f/}V1!, {3, and fo, fN41s

) such that:

where A € [0, 1], then there exists a unique quartic spline s € Sﬁ‘l

st=f,i=0)N +1,

siox = fla» 1= 0(1)N, (1.1)
S0 = fo, SN4+1 = fN+1,

whenever A # %j: é\/§, and N is even if A = % Also an L,.,-error estimate for this quartic
spline, for only A = 0 [resp. A = 1] (cf. Theorem 2.p.357 [4]), was demonstrated.

The object of this paper is to extend the results of this theorem, i.e, the case A €
[0,1] will be considered. It is worth emphasizing here that we avoid using the inverse of
the resulting tridiagonal matrix of the error vector (ey,ez,- - -, en)? for A € [0, %) U (%, 1]
to obtain a bound for the error and that the error is not the best possible. We conclude
with numerical test examples and a quadrature procedure to evaluate definite integrals.

2. Extension of the results and error estimation.

*Received date: 1997-11-23

— 533 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



We now proceed to formulate an extension to Theorem 2 (cf. [4]) for all A € [0,1] as

follows: Since the construction of s € S}v?,)4 which satisfies (1.1) leads to the following
linear system (see {3])

~(A=1)(3A = 1)si_1 + (1 — 2)\)s; + A(3A — 2)si41 = b;, (2.1)
where
b = (R/2) [(A = 1)(2A = 1)fi_y + (832 — 8A + 1) f{ + A(2A — 1) iy | +
(B?/12) (FLaga = fi4a) i = LN,
and recalling that the ith component of s(z) in [z;,2;41] is

s(2) = siAx(t) + siv1 Ba(t) + hfi Ca(t) + hfiyy Da(t) + K2 fiiy Ea(t),  (2:2)

with
Ax(z) = (2 — 1)3(22 + 1) — 3(2) — 1)uz?(1 - z)?,
Bi(z) = A,(1 — z),
Ca(z) = z(z — 1)* = (3A = 2)uz?(1 - z)?,
Dy(z) = -C,(1 — z),
Ex(e) = yue’(1 - 2,
and

1 1
p=(622 —6X+ 1)1 A # Eig\/i, v=1=2,
then setting e; = s(z;) — f(zi), we have (¢ = 1(1)N),
—(/\ — 1)(3A — 1)61'_1 + (1 — 2/\)ei + /\(3)\ — 2)ei+1 = d;,

where

d; =b; + (/\ — 1)(3/\ — 1)fi_1 — (1 — 2)\)fi - /\(3/\ — 2)f,’+1.

For the sake of brevity we will consider only the case where | = 3, i.e., f € C3[0,1]
(the proof runs along the same lines for [ = 5).
Now let z; = ;41 —e; , 2 = 0(1)N, then (2.3) becomes

Bzii1 + z; = &, (2.4)

where \
A-DEY-1) . 5 — di
A(BA-2) A(BA—2)

Equation (2.4) is a first-order linear difference equation whose solution is

ﬂ:

zi = (—B) zo + i(—ﬁ)i_j 8;,i=1(1)N.
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N
Since Y z; = —zg, then for A € (Ay, %) U (Ag,1], where A; and A, are the roots of the
=1

equation 6A% — 61 4+ 1 = 0, we have

1
|0 < Tt_ﬁ(l‘sll + -+ onl),

ie.,
|zo] < s < d
N=1"8"h1-2A
where § = max |§;| and d = max |d;|.
1<i<N 1<i<N

Taking the moduli of both sides of (2.5) and by the virtue of (2.6), we have

|zi] < 18] 120l +8 18I,

=1
or

|zi| < 18|20l + 1—:‘5—@ ,i=1(1)N

It can be verified that:

1 .
m, if A€ (/\1,%]U(/\2,1],
1-18] = 22 -1 £ 11
m, €[5 3)
consequently
181 d if A€ (A, L Aq, 1
7z|1——2/\|+|ﬂ| ) € (A, 51U (A2,1],
IZil < ,Bd N d £ e [1 1
h(1-22) " 1-2X\ 33),
with 34T
J]rf Wuwg(h),  if fe 30,1,
d<
- RS || F®) if 50,1
o 1PV it Fect,

where w3(h) is the modulus of continuity of f"”, [ ws(h) < 2]|f"”||,.] and this asserts the
proof of the following lemma.

Lemma 2.1 If f € C3[0,1], then (i = 0(1)N),

34+7A _
Zioon (817 + (2 - )R wa(h), i A€ (Ar, 21U (g, 1],
e~ il < 3+ 72 2 3 . 11
m(ﬂh + h”)ws(h), if Ae(3,3)
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Furthermore, if f € C*[0,1], then

720 (;-2,\) 8R4 w1 =2 K] [F9] i xe (310 O,
et el < 8 1 4 5 (5)
Cereni Gasgadl Tl I if Aeldd)

Now we are in a position to prove the following theorem:.
Theorem 2.1 Let s(z) be the quartic spline defined as above, with A € (A1, 3) U (A2, 1].
If f € C3[0,1], then for any z € [0,1],

. . [Cx + hg(M\)]h2"ws(h), r=1,2,
s( )(3) f( ( )' { 2[2’)‘4—%_(](/\]}12103(}1), r = 0,

where
A2 = 303 + 7) w8

Cy = :
A 1-2X\

with
pE(3A — 2)(48X° — 61A% + 11A — 1), if A€ (A, 1],
g(A) = ¢ p(27A% - 69A% + 39X — 4)(2A - 1)71, if A€ [},1),
B3N — 2)(48X° —47AZ + 1TA - 1), if A€ (A1)

Proof Since e; = s(z;) — f(zi), then for ¢ = 0(1)N and for = € [z;, zi+1], using Taylor’s
expansion of order 3, we have

B2[s"(2) — 1"(2)] = e AS(1) + exr BY() + Asa0),

where
8ex(®) = (D (@1) - P (@) B0 + 3 (£(as) - £ an)) DO +
6t (f®(as) — O (ae))); @i € (2i,2i41), i = 1(1)6,
hence

B3a(0)] < o8 [BL(0)] +3D40)| +6].

In view of the validity of the following bounds

1
|BX(t)] < 12uA (3% - 2), if A € (Ay, 5) U (A2, 1],
" 2u(12X2 — 9 + 1), if A € (A, 3] U (Ag, 1],
DX < { 6u(4X? - B5A+1), if A€ [3,3],

it follows that

(1)) < (2427 — 19X + 2)R3w3(h), if A € (M
A= (2427 — 25X 4 4)R3wy(h), if A€ [L,
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We now bound (2.10), using (2.11) and the results of Lemma (2.1) to arrive at
h?|s"(z) — f'(2)] < |z] |BY(E)| + |A:a(2)],

which obviously asserts the results given in (2.9) when » = 2.

Integrating over [z;,z],using s’(z;) = f'(z;) and then a second time over [0,z]
(resp.over [z,1]) if « is closer to 0 (resp. to 1), using s(0) = f(0) (resp.s(1) = £(1)),
inequalities (2.9) for » = 1 and » = 0 follow. This completes the proof .

Remark 1 The case A = (N even) will be briefly viewed as follows:

If)= %, then (2.3) can be written as Ae =d,or, e = A~ld with ||A‘1”oo = —
hence

b

N
2

[ W), it fec,
S Um0, re o)

Consequently for any = € [0,1], we have

" // (2 + 5h)ws(h), if fe€ 03[0’ 1],
|s (2)- f (z)l < 310(1 + h)h2 ”f ” , if f € C®[0,1],
and
, 1(2 + 3h)hws(h), if f ecC?0,1],
|s'(z) = f'(2)] < 9;0(4 +7R)R 1O, if £ e c*o,1),
hence
1(2 + 3h)h2ws(h), if fecC?o,1),

15(2)—f(z)|§{ L
1920

Also for the particular case X = %, (2.1) will reduce to the backward recursive formula

4 + Th)h? Hf<5 H , if f e Co0,1).

h2
$i=S8iy1+ £ (2f 1= Tfi - f1+1)+“‘<f"2 —ff;;_)”o

1—5 1

with sy 11 = fng1 which computes s; (¢ = N(1)1) and a similar argﬁment can be used to
obtain a bound for the error, for any z € [0,1].

Remark 2 It is worth noting that if we write (2.3) in the form v2z; + z;_, = oy, with

O ABA-2) - d;
TT O DBA-1) and TS DEA—1)

then for X € [0,A1) U (3,);) and using same arguments similar to that for the previous
case we obtain similar results.

3. Application and Test Examples
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In applied mathematics and statistics (cf. [1]) we sometimes confront with integrals of
the type:

f(z) = /:f’(t)dt, z € 0,1].

This integrals can be evaluated by applying the procedure in Section 2, with fixed A €
[0,1], as follows:

e Use (2.1) to compute s;, 2 = 1(1)N.

e Use (2.2) to compute s(z).

Notice that in [2;, z;11] ( = 0(1)N) and X # 0 or 1,s'(z) is a quasi-Hermite interpolant
of f and one may look upon this as a competitive generalization to some traditional
quadrature rules, which correspond to the cases A = 0 (resp.A = 1). One more advantage
of this procedure is that the integral can be evaluated for any z with the same stepsize h.

In what follows we apply this procedure to the following test examples.

Example 1 Consider the function f(z) = (¢ — 1)(22 — 1)sinz, in [0,1].

Example 2 We test the proposed method on the well-known integral
4 (= dt
=2 v e

Example 3 We apply the procedure to evaluate the Fresnel integral
T
f(z) = / sint?dt, in [0,1].
0

In tables 1, 2 and 3 numerical results for error bounds are listed where the cases N = 19,
39,and 49, h = 1/(N + 1) with A =0, 1/3, 1/2, 2/3, and 1 are considered. The notation
el): j = 0,1,2 stands for the maximum magnitude error ”s(j) — f(j)” .

in [0,1].

4. Conclusion

In summary, we have extended the results of [4] by deriving general error estimates,
for all A € [0,1], for the lacunary quartic C?-spline that uses the first derivative of a
smooth function at mesh points, and the second derivative at an arbitrary point between
the knots. '

It is worth noting that we avoided the usage of the coefficient matrix inverse of the
error vector throughout our error analysis. In addition, the procedure can be implemented
to evaluate definite integrals in a simple manner for any z € [0,1] without needing to
change the stepsize.
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